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Background

Storage capacity of synaptic memory

A classical perceptron, when used as a recognition memory device, has a memory capacity proportional to the number of synapses, N.

However, this requires synapses to have a dynamic range also ∝ N.

If synaptic efficacies are limited to a fixed dynamic range, this introduces a strong tradeoff between learning and forgetting due to new
memories overwriting old. If we wish to store new memories rapidly, then memory capacity is O(log N).

[Amit and Fusi (1992), Amit and Fusi (1994)]

To circumvent this tradeoff, it is essential to enlarge our theoretical conception of a synapse as a single number.

Complex synapses

In reality, a synapse is a complex dynamical system.

We will describe a synapse by stochastic processes on a finite number
of states, M.

Potentiation and depression cause transitions between these states.

[Coba et al. (2009)]

Possible molecular states
strong state

weak state

Potentiation Depression

Cascade and serial models

Two example models of complex synapses with different memory storage properties.

Cascade model

Serial model
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[Fusi et al. (2005), Leibold and Kempter (2008)]

Questions

Can we understand the space of all possible synaptic models?
How does the structure (topology) of a synaptic model affect its function (memory curve)?
How does synaptic complexity (number of states) extend the frontiers of possibility for memory?
Which synaptic state transition topologies maximize measures of memory?

Framework

Synaptic state transition models
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Assumptions:
Candidate plasticity events occur independently at each synapse,
Each synapse responds with the same state-dependent rules,
Synaptic weight takes only two values, ±1.

[Fusi et al. (2005), Fusi and Abbott (2007), Barrett and van Rossum (2008)]

Memory curve

We use the ideal observer approach: read synaptic weights directly. This is an upper bound on what could be read from network activity.
To measure memory quality, let ~w be an N-element vector of synaptic strengths,

SNR(t) =
〈~wideal · ~w(t)〉 − 〈~wideal · ~w(∞)〉√

Var (~wideal · ~w(∞))
.

Upper bounds on performance

Initial SNR bound

Initial SNR is closely related to equilibrium flux between strong & weak states

SNR(0) ≤ 4
√

N
r

Φ−+.

Maximized when potentiation guarantees ~w → strong,
depression guarantees ~w → weak.

→ Equivalent to two-state model

Transitions:

1

1

=⇒ SNR(t) =
√

N (4f potf dep) e−rt .

Maximal initial SNR: SNR(0) ≤
√

N.

Area bound

The memory lifetime is bounded by the area under the SNR curve:

SNR(lifetime) = 1 =⇒ lifetime < A.

We can show that this area has an upper bound:

A ≤
√

N(M − 1)/r .

This is saturated by a transition diagram with the serial topology. lifetime
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Proof: Impose an ordering on the states

Let Tij be the mean first passage time from state i to state j . The following quantity

η =
∑

j

Tijp
∞
j ,

is independent of the initial state i . It is known as Kemeney’s constant. [Kemeny and Snell (1960)]

We define:
η+i =

∑
j∈strong

Tijp
∞
j , η−i =

∑
j∈weak

Tijp
∞
j .

These measure “distance” to the strong/weak states. They can be used to arrange the states in an order
(increasing η− or decreasing η+).

Maximal area

Given any synaptic model, we can construct one with a linear chain topology that has

the same state order,
the same equilibrium distribution,
a larger area.

Uses a deformation that reduces “shortcut” transition probabilities and increases the bypassed “direct” ones.

The area of this model is
A =

2
√

N
r

∑
k

p∞k |k − 〈k〉| .

This is maximized when the equilibrium probability distribution is concentrated at both ends.

ε

ε
In the limit ε→ 0.

Eigenmode decomposition

We can split the system along eigenvectors of the stochastic forgetting process:

SNR(t) =
√

N
∑

a
Ia e−rt/τa.

The upper bounds on initial SNR and area tell us:∑
a
Ia ≤ 1,

∑
a
Ia τa ≤ M − 1.

What are the implications for the full memory curve?
Are there any other important constraints?

The memory envelope

The frontiers of possibility: a maximal SNR curve

Markovian learning and forgetting =⇒ SNR is a sum of decaying exponentials.

Optimizing the SNR at one time, t0, over the space of such curves, subject to upper bounds on initial SNR and area, yields an
upper bound on SNR at t0 for any synaptic model. The resulting optimal memory curve is a single exponential (optimizing at
two or more well separated times requires multiple exponentials).

Varying t0 yields a memory envelope curve with a power law tail.
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envelope
numerical search
hand designed

Initial SNR bound active

Area bound active

Early times: (varying M)

Late times: (varying ε)
ε

ε

Envelope for running average memory curve

We define the running average SNR:

ŜNR(τ ) =
1
τ

∫ ∞
0

dt e−t/τ SNR(t) ∼ 1
τ

∫ τ

0
dt SNR(t)

For any τ , this is maximized by a model with the serial topology.
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Numeric Envelope
Uniform serial
Shorter chains
Sticky end states

Earlier times: shorten the chain
ε

ε

Later times: make end state “sticky”
ε

ε

Summary

We have formulated a general theory of learning and memory with complex synapses.
We can impose an order on the internal states of a synapse through the theory of first passage times.
The area under the memory curve of any synaptic transition diagram cannot exceed that of a linear chain with the same
equilibrium probability distribution.
We find a memory envelope: a single curve that cannot be exceeded by the memory curve of any synaptic model.
Synaptic complexity (M internal states) raises the memory envelope linearly in M for times > O(M).
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