



# Aerospace Technology Gaps and the U.S. Space Force

By: Katie Kim, Rohan Wariyar, Niko Chapas, Nick Delurgio, and Connor Scott





## Agenda

**Executive Summary** 

Research Objectives/Methodology

USSF Mission/Goals

**In-Space** Propulsion

Satellite Communications

Conclusion/Recommendations





## **Executive Summary**

- In this presentation, we will be analyzing the needs for the future of the U.S. Space Force.
  - how the aerospace industry can develop to fulfill those needs
- We have developed a methodology that initially identified the present and future technology gaps for the Space Force.
  - After recognizing gaps in current technology, our motivation was to find how the aerospace industry is planning to advance
  - Our research encompassed two specific aerospace technologies that are vital for the Space Force





# Research Objectives/Methodology





## **Approach and Outcomes**

- Identify the strategic objectives of the USSF
  - From Space Force Documentation Ο
- Create a methodology to best determine technology gaps
  - Critical evaluation of available/conceptual technology in a chosen discipline
  - Tested on the following fields: Ο
    - **In-Space Propulsion**
    - Satellite Communications
- Provide USSF with recommendations





# Methodology

- 1. Derive USSF Objectives
  - From global trends & USSF documentation
- 2. Create Hypothesized Mission Profiles
  - Thought exercise to help relate USSF objectives to current technology
- 3. Infer Technology Needs
- Research and Analyze Current/Emerging Technology 4.
- Synthesize the individual capability/need mismatches 5. between steps (3) and (4) into technology gaps





## **USSF** Missions/Goals





## **Global Trends**

- Post Cold War: international collaboration in the space domain (ex. ISS)
  - This period appears to be ending
  - Trending toward factionalism
- Russian government still has strong presence in space
- China's influence is spreading across Asia
  - Rapid development of in-space capabilities
- Potential Chinese-Russian cooperation
- Competition between US, Russia, and China on in-space activities is likely.





## Space Force Objectives\*

- Space Superiority
- Space Domain Awareness
- Space Support to Operations
- Space Mobility and Logistics
- Information Mobility

\*Document: Comprehensive Plan for the Organizational Structure of the U.S. Space Force





# Hypothesized Mission Profiles

- Protect USSF space assets from hostile threats
  - Kinetic, Laser, Electronic, Cyber Warfare
  - May require rapid response
- Initiating in space offensive maneuvers
  Blind, disable, or even destroy a target spacecraft
- Planetary and non-planetary surveillance
- Transportation of crews and equipment to, from, and across cislunar space
  - Generally requires larger spacecraft
- Defend commercial/private spacecraft
  - Preserve freedom of action/ensure in-space safety





## **In-Space Propulsion**





## **General Requirements**

#### **1. Impulsive Maneuvers**

- Required thrust dependant on a spacecraft's mass
- Essential for offensive/defensive maneuvers, transportation

### 2. Attitude Controls/Orbital Maintenance

- Attitude control important to complete in-space missions
   Note: Attitude Control can be done with reaction wheels
- Orbital maintenance required to correct prevent orbital drift

### 3. Longevity

- Spacecraft's lifespan exceed its mission length (10+ years)
- Fuel requirements often a limiting factor

### 4. Deorbiting Ability

• Necessary to prevent accumulation of space debris





# Technology

#### **Chemical Propulsion**

- Typically used on medium/large spacecraft
  - Well-understood, flight-demonstrated
- Capable of high thrust, but comparatively low I<sub>sn</sub>

### **Electric Propulsion**

- Often used for small spacecraft and deep-space missions
  - Some methods are well understood (HETs)
  - Currently lots of innovation in this field
- High I<sub>sp</sub>, but intense power requirements limit thrust **Nuclear Propulsion** 
  - Use of fission/radioisotopes to (in)directly provide thrust Early stages of development
  - Nuclear Thermal: high I<sub>sp</sub> and thrust for in-space applications
  - Nuclear Electric: used in conjunction with electric propulsion





# Thrust and Specific Impulse

#### Thrust

- Higher thrust leads to faster maneuvering
- Larger mass -> lower acceleration

#### Specific Impulse (I<sub>sp</sub>)

- Increases thrust by increasing exhaust velocity
- Higher I<sub>SP</sub> leads to less fuel consumption





# Fulfillment of Individual Needs

#### 1. Impulsive Maneuvers (Met)

- Variety of chemical propulsion technologies (bipropellants) meet this need •
- Small spacecraft can use electric propulsion ٠
- Nuclear Thermal a great option with development, high I<sub>sp</sub> •

#### 2. Attitude Control/Orbital Maintenance (Met)

Monopropellants, cold gas, electric propulsion are effective options •

#### 3. Longevity (Met)

- Reducing fuel consumption (increasing  $I_{sp}$ ) is key •
  - High I<sub>sp</sub> electric systems such as HETs and Gridded Ion are great solutions
- Nuclear Propulsion also offers impressive I<sub>sp</sub> •

#### 4. Deorbiting Ability (Met)

- Aerodynamic Drag, Electrodynamic tethers can be used in cislunar space ٠
  - Uncontrolled Solution
- Electric propulsion systems also an excellent, controllable option ٠





## Synthesis of Needs

#### 1. Impulsive Maneuvers & Longevity (Not Met)

- Electric Propulsion meets both needs for small spacecraft
- Larger spacecraft generally require chemical propulsion
  - **Requires in-space refueling**
- Nuclear Thermal is a potential future solution
- 2. Attitude Controls/Orbital Maintenance & Longevity (Met)
  - Electric propulsion fulfills this need; chemical propulsion does not •
    - Low thrust requirement means these systems can be very efficient

**Takeaway:** the lack of high thrust, high I<sub>sp</sub> solutions is the most significant propulsion technology gap the USSF is facing.





## **Satellite Communications**





## **General Requirements**

### **1. Security and Confidentiality**

• Prevent access to information

### 2. Information Mobility

- Reliability of transmissions
- Rapid timing of transmissions
- Ability to respond to threats swiftly and seamlessly

### 3. Resiliency

- Maintain communications in all operating environments
- Diversified and proliferated satellite communication capabilities





# Technology

### **RF** Communication

- Conventional method of SATCOM
- Responsible for majority of communications today

### **Optical Communication**

Newer, promising method of SATCOM

### **Data Processing**

 Set of technologies responsible for sending, receiving, and interpreting communications





# Fulfillment of Individual Needs

#### 1. Security and Confidentiality (Met)

- Current technology like Protected Tactical Waveform offers secure communication capabilities
- Could be improved with innovation in quantum cryptography ۲

#### 2. Information Mobility (Not Met)

- An ever increasing demand for bandwidth requires improvements upon conventional RF technology to combat spectrum congestion
- With further development, optical communication and the use of ٠ higher frequency bands could meet requirement

#### 3. Resiliency (Not Met)

- MILSATCOM currently relies on a small number of large multipurpose • satellites
- Disaggregation could meet requirement by providing redundancy and target diversity





### Synthesis of Needs

- **1. Security and Confidentiality/Information Mobility** (Not Met)
  - Protected communication is currently very limited in  ${}^{\bullet}$ capacity
  - Optical communications are more secure than RF • communications and more readily deployed

Takeaway: The lack of widespread protected communications is a significant problem facing the USSF





# **Conclusion/Recommendations**





# Summary: Propulsion

### Conclusions

- Modern technology adequate to fulfill most USSF objectives
- Large spacecraft limited by fuel requirements

### Recommendations

- Focus on small spacecraft development in the short term
  - Can meet our longevity requirement via electric propulsion
- Invest in Nuclear Thermal Propulsion research
  - Eventually large spacecraft will be necessary
  - Even with nuclear propulsion, in-space refueling will eventually be necessary

The University of Texas at Austin

Cockrell School of Engineering



# Summary: Communications

### Conclusions

- RF spectrum congestion and increasing bandwidth demands pose big problem
- Advancements in optical communications or higher frequency bands are necessary to meet requirements
- Older space systems that prioritize size and capability are high-value, easily identifiable targets

### Recommendations

- Focus attention on development of antenna technology to cover new frequency bands (including optical frequencies)
  - Cost, power consumption, miniaturization, efficiency
  - Promising techs include metamaterial, 3D-printed, and fractal antennas
- Implement disaggregation sooner rather than later
  - Redundancy, target diversity



## Learning Outcomes

#### **During Research:**

- More involved in current events regarding space policy
- Understanding the urgency of space security
- Assessing applications of aerospace technologies to Space Force needs
- Forming hypotheses and utilizing documentation to develop an informed viewpoint

### Follow-Up:

- Continue to stay updated with current events
- Apply this research method to other technologies
- Applying knowledge to our aerospace careers
- Using what we learned as motivation for our studies
- Informing others and seeking knowledge from professionals



# Thank you!

### Questions, comments, concerns?





## Discussion

We are writing a research paper which covers these points in more detail.

- What technology is the aerospace industry lacking on the most? What developments need to be made with that technology?
- What research methods would help our analysis?
- Are there any resources you would recommend for learning more about the needs of the Space Force?
- What are some emerging threats that the aerospace industry has not begun to address yet?

