
Spicing it up with SpicyNeRF :
Novel View Synthesis Using Thermal Images

Griffin Holt
Stanford University

Department of Electrical Engineering
gholt@stanford.edu

Andrew Zhang
Stanford University

Department of Electrical Engineering
azhang82@stanford.edu

Abstract

In this report, we present SpicyNeRF , a prelimi-
nary method of applying and adapting Neural Radiance
Field (NeRF) methods to generate novel thermal views
of a scene. As a baseline, we separately run a varia-
tion of the vanilla NeRF model Nerfacto on a paired
set of both thermal and traditional RGB images of the
same scene, where each thermal photo corresponds to
an RGB photo taken simultaneously from the same de-
vice. By comparing the results, we found that the first
major hurdle to the NeRF pipeline was an accurate es-
timation of the parameters of the thermal camera used.
This paper explores different methods to overcome this.
We first explored parameter estimation methods using
classical computer vision techniques. Specifically, we
extracted the extrinsics of the RGB photos and directly
mapped them to the thermal photos since they are taken
from the same view. The thermal camera intrinsics
were then estimated separately using COLMAP; how-
ever this was shown to be untenable. We then instead
adopt a neural solution which makes the thermal cam-
era extrinsics and intrinsics parameters to be learned
during NeRF training. We show that this is a massive
improvement over classical techniques. However, there
still exist many limitations as the neural net implemen-
tation struggles to train on 360-degree view datasets,
causing errors in the rendering. Over this, we finally
present SpicyNeRF , which leverages a presupposed
corresponding RGB dataset to create better initializa-
tions of the extrinsics of the thermal images for better
training.

1. Introduction
Novel view synthesis (NVS) is the task of generating

a new view of a scene given a sparse set of input images
of the scene. For example, given a number of images of

an object from different vantage points, one would like
to infer what the object would look like had an image
been captured from a different vantage point.

1.1. Vanilla NeRF

The advent of NeRF [6] in recent years has presented
a shift in focus toward neural based representations for
novel view synthesis, where neural networks are now
used to create neural implicit representations of the
scene. In its original formulation, a set of camera poses
are first given. Each pose is a five dimensional vector
consisting of a 3D spatial vector x as well as a 2D look
direction d parameterized by two angles. Ideally, these
would represent a diverse set of different views of the
same scene. This 5D vector defines the location of an
image plane consisting of H ×W pixels. It is the value
of the color at each of these pixels that then need to be
evaluated in order to represent the view of the scene.
To do this, thinking along the lines of the classical ray
tracing algorithm, we can imagine that from each cam-
era location through each pixel there exists an inward
coming ray coming from the scene. If we evaluate the
color information this light ray carries as it propagates
through space, we can compute what the color would
be at each pixel. The next step then is to query 3D
points in space along each of these outgoing rays given
a ray direction and see what color information is carried
at that point. Specifically, at each point, we will want
to compute an RGB value as well as a volume density σ,
which represents how “transparent” that point is and
how likely a ray is to travel through it. In essence then,
the neural network takes as input a spatial location x
as well as the 2D ray direction d, and returns a 4D
RGBσ vector. The intuition behind also inputting the
ray direction is that the color of an object can change
depending on what direction you view it from.

Despite the capacity of neural networks to univer-
sally approximate any function, it is known that they



are biased towards learning low frequency functions [8].
This can present problems in the case of NeRF when
complex textures of a scene need to be represented by
high frequency color variations. To tackle this, each
of the 3D query points x and 2D ray directions d are
mapped onto a higher dimensional input γ(x), γ(d)
before finally being input into the network, similar to
that of positional encoding. Doing so allows the neural
net to learn higher frequency functions to accurately
represent color variation.

By providing a set of images with known camera
poses, the neural net is purposely overfit to the scene,
learning the color information corresponding to each
of the points in space to allow for a rendering that
matches the training data. This is in contrast to most
neural network applications, where overfitting is gener-
ally undesired. In the end, the weights of the network
in a way “represent” that of the scene, and in a very
meaningful way can be thought of as a compressed ver-
sion of a 3D model of the scene.

More specifically, in order to finally render a new
view of the scene, a new camera pose is given, and rays
are again sent out. Along the ray are sampled posi-
tions, and at each position, the neural net evaluates
the corresponding volume density σ and color informa-
tion c. The final color value of the ray r(t) = o + td
(where o and d represent the camera position and ray
direction respectively) with near and far bounds tn and
tf is as follows:

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (1)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
.

Evaluation of the integral in equation 1 across all
pixels in the image plane allows for the final render-
ing of a view of a scene. This can then be compared
with the ground truth images to calculate an L2 loss
as described by

L =
∑
r∈R

[∣∣∣∣∣∣Ĉc(r)− C(r)
∣∣∣∣∣∣2
2
+
∣∣∣∣∣∣Ĉf (r)− C(r)

∣∣∣∣∣∣2
2

]
(2)

where R represents the set of all rays used, C(r) repre-
sent the ground truth color, and Ĉc, Ĉf represent the
color values of a ray calculated using a coarse and fine
sampling technique respectively. Performing gradient
descent over this loss to update the parameters of the
network allow the model to then overfit to the scene
and then represent it implicitly from newly queried
viewpoints. Although different variations of NeRF may
use different sampling techniques leading to different

loss functions, the essence of each one is same which
involves optimizing over a photometric-based loss.

1.2. SpicyNeRF

NeRF allows for extremely inexpensive 3D render-
ings of objects, which can lead to a wide range of
applications from AR to scene representation for au-
tonomous driving. It is of interest then of many to
extend the capabilities of NeRF to non visible parts of
the spectrum.

One possibility is adapting NeRF methods to ther-
mal images. Thermal images have a wide array of
use cases, such as reconnaissance and medical imag-
ing. Its appearance, however, presents many chal-
lenges for NeRF. The vanilla NeRF model requires im-
ages to have known camera extrinsics and intrinsics,
which represent the camera poses and various coeffi-
cients such as focal length, image size, and distortion
coefficients. These parameters, particularly the extrin-
sics, are unavailable in most application settings, and
so are instead estimated using classical structure from
motion techniques like COLMAP [9] before being in-
put to NeRF. These work by matching different fea-
tures across a set of images of a view of an object,
but thermal images often are unable to provide that
information due to their relative lack of textural infor-
mation, and so fail to produce proper camera extrinsics
and intrinsics.

We propose instead SpicyNeRF , an alternative
NVS pipeline that adapts NeRF to thermal images.
Rather than having the NeRF model require the ex-
trinsics and intrinsics to be attached to each image, we
instead make them parameters to be learned during
training time, allowing us to wholly bypass the need
for COLMAP or other parameter estimation methods.
This has been described in many works [14]; however,
there have been many difficulties in optimizing these
parameters. We presuppose then the existence of a set
of corresponding RGB photos of each thermal image,
and further refine the learning procedure by initializ-
ing the learnable extrinsics to the ones extracted from
COLMAP on the RGB photos. We find that these neu-
ral based methods begin to give a much more realistic
rendering of a thermal scene.

2. Related Work

We separately survey two categories of related work
in the NVS literature: one that assumes camera pa-
rameters are known, and one that assumes them to be
unknown.



2.1. Parameters Known

For many NVS pipelines, input images are required
to have the appropriate camera extrinsics and intrin-
sics. This is the case in vanilla NeRF, but also in many
other methods, such as Mip-NeRF [1], Scene Repre-
sentation Networks [10], Occupancy Networks [5], and
Multiplane Imaging (MPIs) [2]. These methods are
all unified in that a volumetric function of a scene is
learned by using photometry-based optimization, and
each has its own benefits by leveraging different im-
age features and varying sampling techniques. However
they also all require camera poses to be known, which
in many applications such as ours is often unavailable.

2.2. Parameters Unknown

So we instead turn to works where the intrinsics and
extrinsics need not be provided. These parameters are
instead to be jointly optimized along with the scene
geometry. Traditional work in this field include the
aforementioned COLMAP, which works by matching
features across a set of images. However, such a system
is expected to fail on thermal images which lack distinct
features.

More recent work has looked to using neural based
methods to also estimate camera parameters. In this
line of work, we have the state of the art BARF [4],
however this implementation is only capable of learning
the extrinsics, and still requires the intrinsics to be pro-
vided. Over this there exist works such as NeRF– [6]
which makes both the intrinsics and extrinsics learn-
able parameters of the NeRF model. Limitations how-
ever include the assumption that the training data rep-
resents only forward facing scenes, meaning all photos
of the scene are taken from one plane. Optimization
over the special orthogonal group SO(3), which rep-
resent the set of possible rotation matrices that the
camera extrinsics can take on, has been known to be
difficult due to properties of its algebra group [13], and
so learning the poses for a full 360 degree scene remains
an outstanding challenge.

3. Methodology
3.1. Classical CV Methods

As a baseline, we first run the thermal images
through a variation of the vanilla NeRF model Ner-
facto [12], which combines components of different vari-
ations of NeRF to achieve a balance between speed of
training and quality of rendering. We use the popu-
lar NeRF API, Nerfstudio [11], which modularizes the
pipeline and allows for easy viewing of the rendering
during training time and with that more qualitative
analyses of the final scene.

Nerfstudio works by first taking the input images
and estimating each one’s extrinsics and intrinsics via
COLMAP. The batch of processed images is then fed
to the flavor of NeRF chosen. The training process, as
well as the estimated camera extrinsics, can then be
visualized in a viewer.

To overcome the poor camera pose estimation ex-
pected of COLMAP for thermal parameter estimation,
we leverage the fact that we also have a paired set
of RGB photos taken simultaneously with the ther-
mal images. The camera parameters estimated using
COLMAP [9] for the RGB photos can then be naively
transferred to each corresponding thermal image. We
expect the extrinsic mapping to be justified, since the
camera lens for both cameras were very proximal on
the device we used. The intrinsic mapping, which in-
volves a transfer of the distortion coefficients, the im-
age size parameters, as well as focal lengths, is less
than justified, as each camera should have extremely
different intrinsics. We instead attempt to estimate
these intrinsics separately apart from the extrinsics us-
ing COLMAP again. After performing this mapping,
we can then run the pose-estimated thermal images
through Nerfstudio.

3.2. Neural Based Methods

Beyond classical CV methods, we also utilize a
slightly modified version of the implementation as de-
scribed in NeRF– [14] to instead make the camera
parameters jointly learnable with the scene rendering
during training. The neural net, which as described
above takes as input a high dimensional projected spa-
tial coordinate γ(x), γ(d) and outputs the 4D color
information, is tiny by deep learning conventions, but
can still perform extremely well. Specifically, the pro-
jected spatial coordinate γ(x) is first passed through 4
Linear-ReLU layers. The output from this is then sepa-
rately used in two ways, one to calculate the scalar den-
sity σ using a linear layer, and the other to be passed
through another linear layer before being concatenated
with the projected look angle γ(d) of the image. By
calculating the density before concatenation with the
look angle, we ensure that the density is independent
of the vantage point. After concatenation, the vector
is then passed through one final linear-ReLU layer be-
fore finally being passed through a last linear layer to
produce an RGB 3-vector. A diagram of this network
architecture is shown in Figure 1.

In addition to the traditional learnable weights and
biases of the MLP layers specified above we make two
additional categories of parameters learnable as de-
scribed in the NeRF– paper: the camera intrinsics and
extrinsics.



Figure 1. Architecture of the neural network used to compute the density σ and RGB values at a given spatial coordinate
and look angle by taking as input the projected spatial coordinate γ(x) and the projected look angle γ(d). Numbers in
between layers represent the dimension of the output.

For a pinhole model of a camera, the intrinsics in-
volve the focal length f as well as the principle points
cx and cy, which in our case can be considered to be the
center of the image so that cx ≈ W/2 and cy ≈ H/2,
where H and W are the dimensions of the input image
in pixels. The only learnable intrinsic then is the focal
length.

The extrinsics of the camera involve knowing the
camera’s position in space as well as its orientation.
This can all be summarized by the camera-to-world
transformation matrix Twc = [R|t], where R ∈ SO(3)
and t ∈ R3. R is any matrix that represents a rotation
in Euclidean space about the origin. This means that
it must preserve the origin, Euclidean distance, as well
as the orientation. The t vector can straightforwardly
be thought of as a translation vector that positions the
camera in R3.

From these parameters, we can then begin the ray-
tracing algorithm used in the NeRF pipeline. To render
the color value of a pixel p of a given image Ii, we send
out the ray r̂i,p(h) = ôi + hd̂i,p, from the ray origin
ôi = t̂i in the ray direction

d̂i,p = R̂i

(u−W/2)/f̂

(v −H/2)/f̂
−1

 , (3)

where u and v are the pixel location in the image grid.
We sample a number of 3D points along this ray and
evaluate the color information using the NeRF model.

We can see that the above equation is fully differ-
entiable in the camera parameters when finally calcu-
lating the L2 loss of the final rendered color with re-
spect to some training set, so one may naively make
the parameters π̂i = (f̂ , R̂i, t̂i) all learnable parame-
ters. However this does not work in the case of the ro-
tation matrix R̂i. Because R̂i must lie in SO(3) space,

it can be problematic to carry out a straightforward
gradient-descent based backpropagation update on R̂i

. We instead learn an alternative parameter φ = αω,
where ω is a normalized rotation axis, and α is the
rotation angle from said axis and varies from 0 to π.
Each φ can be mapped to a valid rotation matrix using
Rodrigues’ formula

R = I + sin(α)
α

φ^ +
1− cos(α)

α2
(φ^)2, (4)

where (·)^ represents the skew operator and converts a
vector to a skew-symmetric matrix.

Because the Rodrigues’ Formula translates a vector
in R3 to a matrix in SO(3) and is differentiable, we
can instead make φ a learnable parameter in place of
the rotation matrix and more easily carry out gradient
descnet updates.

Mathematically, gradient descent based optimiza-
tion should allow for a full recovery of the correct pa-
rameters. However, without good initializations, it can
be extremely difficult for the network to fully learn
the correct φ for each image again due to properties
of SO(3) space. As a result, the authors of NeRF–
run their implementation exclusively on forward facing
datasets. This means that all images were taken from
a single plane facing forward, with only small pertur-
bations in rotation. By initializing φ to zero for each
image, the network only needs to learn a small devi-
ation from the identity rotation to match the ground
truth camera rotation matrix. For datasets that in-
volve full 360 degree views, we expect the model to
perform much worse.

As an improvement over running our surround-view
dataset naively through NeRF–, we leverage the avail-
ability of a corresponding RGB dataset which can
be run through COLMAP to give camera extrsinics.



Similar to our baseline method, we can then map
these extrinsics to the thermal ones by appropriately
initializing the corresponding φ network parameters.
COLMAP however outputs the estimated rotation ma-
trices, and so the φ for each image must be back cal-
culated by deriving the appropriate α and ω. This can
be done by observing that ω is the eigenvector of ro-
tation matrix R with associated eigenvalue λ = 1, i.e.
Rω = ω. α can be derived by observing that

Tr(R) = 1 + 2 cos(α), (5)

which takes advantage of the trace properties of the
skew matrix.

Rearranging for α we obtain

α = ± arccos
(
1

2
Tr(R)− 1

)
, (6)

where the sign of α is determined by testing whether
+α or −α correctly reconstructs R.

By extracting R for each RGB image, we can then
derive the corresponding φ = αω and appropriately
initialize each φ parameter for every thermal image.
COLMAP also provides the t vectors, which can be
directly used as an initialization in the network. We
believe that providing a better initialization close to the
ground truth, backpropagation can allow the network
to quickly converge to the ground truth extrsinics.

An obvious limitation to this final proposed method
is the necessity of having available corresponding RGB
photos. In many applications, such as night time recon-
naissance, it may be difficult to obtain corresponding
visible light photos. Fortunately, for our specific ap-
plication, which was exploring thermal images as used
in detecting shorts in electronic circuits, RGB photos
are readily available. In fact, many cameras provide
the option of simultaneously taking both an RGB and
thermal image, which justify our use of extrinsic map-
ping.

4. Dataset and Features
The novelty of using thermal images for NeRF re-

quired us to make our own multi-view thermal image
dataset. We are grateful to Dr. Rivez who allowed us
to use the thermal cameras used in their power elec-
tronics lab SUPER-lab.

We specifically used SUPER-lab’s FLIR 363900
thermal camera, which can simultaneously capture
both thermal and RGB photos. The RGB and ther-
mal photos are 640 x 480 and 320 x 240 pixels large
respectively.

In total we captured 181 pairs of thermal-RGB pho-
tos. To allow for maximal thermal and textural variety,

Figure 2. Two pairs of RGB and thermal photos of an active
hot plate with a heat sink placed above

we chose to image an active hotplate with a heat sink
placed on top. Two pairs of the raw images are shown
in Figure 2.

As one can see, the FLIR camera software exports
photos with an irremovable watermark and temper-
ature scale. Cropping was thus needed, and photos
were taken to account for this. In order to preserve the
original principle points, the photos had to be center
cropped, resulting in a final resolution of 280 x 186.

Most machine learning applications require the use
of a separate training and test dataset to quantify the
generality of the final trained model. In NeRF con-
texts, a test dataset is often unable to be obtained be-
cause we have no ground truth labels for the camera pa-
rameters, a necessary prerequisite. In all of our meth-
ods, the ground truth camera parameters are never
known, and so it does not make sense to make a train-
ing/evaluation dataset split. Most of the time it makes
much more sense to rely on qualitative analyses of the
success of the final rendering, which can be easily done
by creating a video or using a viewer.

5. Experiments, Results, and Discussion
5.1. Classical Techniques

We first ran our collected RGB and thermal data
through the Nerfacto model using Nerfstudio. All pa-
rameters were set to their default values, and we did
a qualitative analysis using the viewer. As expected,
as a preprocessing step into the neural model, Nerf-
studio uses COLMAP to extract the camera parame-
ters. As expected, the algorithm completely fails on the
thermal images, being unable to even given rough es-
timates. The API itself complains that there were not
enough features detected in the images. As a result, we



(a) RGB (b) Thermal (Uncropped)

Figure 3. Pose estimations visualized as given by
COLMAP. We can see that the algorithm struggles with
thermal images. Note that the thermal images used are the
uncropped ones. COLMAP completely failed to give pose
estimations for the cropped thermal images

Figure 4. Thermal poses after extrinsic and intrinsic trans-
fer.

were not even able to begin training on the data. For
contrast, we ran the same pipeline on the RGB pho-
tos, which worked as expected and successfully gener-
ated high quality novel views. The estimated poses are
shown in Figure 3. We additionally show the esimated
poses used when we use the uncropped thermal images
with the watermark and temperature scale attached.
COLMAP successfully runs but estimates them to all
face the same direction, which we believe occurs be-
cause all of the detected features are in the constant
watermark. This illustrates nonetheless the inability
to detect features on the thermal image itself.

To properly run the model, we then naively trans-
ferred the estimated camera parameters for the RGB
photos to the thermal ones. This result is shown in
Figure 4. Although the extrinsic mapping is well justi-
fied, the intrinsics are less so since we expect the focal
length and image size to be completely different for the
thermal camera. This can be seen when we view the
rendering from the same angle as a given training ex-
ample. We expect these to be at least as good since the
neural net should easily overfit to the training data.

We noticed that the “correct” image is actually con-
tained within that rendering, however it is off-centered.
Indeed, by adjusting the intrinsics to account for the

(a) Before (b) After

Figure 5. Rendering viewed from the vantage point of a
training example’s before and after partial intrinsic correc-
tion.

Figure 6. Rendering after partial intrinsic correction from
a vantage point not contained in the training data.

correct image dimensions, we see that the rendering
produces a much better view, as shown in Figure 5.

Despite the success of the neural net to fit to the
training data, the rendering completely failed when a
novel view was queried. This is illustrated in Figure 6.

The only intrinsic left to estimate then was the focal
length. We tried to extract the intrinsics separately
from the extrinsics using COLMAP again, however it
once again completely failed, and so a full correction
was unable to be made.

For each of these methods we record the peak signal
to noise ratio (PSNR) in Table 1. PSNR is one of the
most widespread quantiative metrics used to measure
NeRF performance, and is described by:

PSNR = 20 · log10(MAXI)− 10 · log10(MSE) (7)

where MAXI is the maximum possible value of the
image, and MSE is defined below and represents the
average pixel by pixel square difference across the entire
training set.

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (8)

PSNR acts as a proxy for the L2 distance, but is
flipped in that a higher value is desired. PSNR is usu-
ally expressed in units dB. Despite the utility of quanti-
tative metrics, we hope that our figures serve as a much
better metric in gauging the success (or lack thereof)
of our renderings.



Case PSNR (dB)
RGB 20.73
Thermal (Uncropped) 12.17
Thermal (Naive Parameter Transfer) 9.97
Thermal (Partial Intrinsic Correction) 10.64

Table 1. PSNR Results

5.2. Neural Techniques

Over the sub-optimal results obtained using tradi-
tional computer vision techniques, we next turned to
neural based solutions in making the camera param-
eters learnable as part of network training. Our im-
plementation was done in PyTorch [7] following the
architecture described in Section 3.2 and is based off
the Colab implementation given in the NeRF– GitHub
repo [14].

Specifically, we used Kaiming initialization [3] for
the network weights, and first assume completely un-
known camera parameters. The extrinsics are thus ini-
tialized at t = 0 and φ = 0, which means that each
camera starts at the origin facing the −z direction. The
focal lengths fx and fy are respectively initialized to H
and W . The focal lengths, camera poses, and network
weights are each separately trained using a different
Adam optimiser, but they all start with a learning rate
of 0.001. For the network weights, the learning rate de-
cays every 10 epochs by a factor of 0.9954. The focal
length and pose learning rates decay every 10 epochs
by a factor of 0.9. Everything is jointly trained for 500
epochs, unless otherwise mentioned.

The PSNR of the model during training is graphed
in Figure 7 for the case of completely unknown cam-
era parameters for both RGB and thermal photos. We
also display a novel view generated for both modali-
ties in Figure 8. We attach all further renders made in
the Appendix. We urge the reader to additionally in-
spect the GIFs attached to this report to form a better
qualitative judgement of the results.

(a) RGB Images (b) Thermal Images

Figure 7. PSNR vs. Epoch using 0 initialization

(a) RGB (b) Thermal

Figure 8. Novel rendering with 0 initialization

From the figures, we can see that PSNR achieves
good convergence. We also see that for the thermal
case, the results are both quantitatively and qualita-
tively a massive improvement over all previous meth-
ods discussed. The rendering actually produces a rigid
body that much resembles the original hot plate sys-
tem. However, we can see that from certain angles,
the bottom of the hotplate appears much less well-
rendered, and overall the body seemed “amorphous”,
meaning the effective point cloud was not well-formed.
We confirmed this by analyzing the RGB case, where
we see the model struggled much more in comparison
to the traditional Nerfacto method. Indeed, the render-
ings show something more of a “cloud” of a hotplate,
rather than a solid body. The better performance of
the thermal images over the RGB ones in this case may
be due to the lack of texture in the first place of the
thermal images, a case where the texture-less feature of
thermal images act instead as a performance enhancer.
Nevertheless, much of these difficulties were anticipated
as mentioned in the previous discussion on the difficulty
of adapting this method to full view datasets, and the
massive improvement over previous failures to even be-
gin to estimate the parameters cannot be understated.

5.3. SpicyNeRF

Finally, to adapt NeRF– to our 360 degree dataset,
we leveraged the availability of our RGB dataset and
initialized the t and φ vectors of the thermal images
according to the procedure outlined in Section 3.2. We

(a) RGB Images (b) Thermal Images

Figure 9. PSNR vs. Epoch using extrinsics initialization



Figure 10. Novel thermal render using extrinsic initializa-
tion.

ran our entire RGB dataset through COLMAP, and
then transformed the extracted extrinsics to the ap-
propriate φ and t values. The network parameters were
then initialized accordingly. The PSNR of the model
during training for both RGB and thermal images is
shown in Figure 9, and can be further visualized by
looking a novel rendering shown in Figure 10. Again,
additional renderings are attached in the Appendix,
and a GIF is attached to this report.

In this case, we notice again good convergence of
PSNR for both modalities, however there was a notice-
able downgrade in performance with regard to both
quantitative and qualitative metrics for the thermal
case (however it still represents a great improvement
over non-neural based parameter estimation methods).
The RGB case performed almost exactly the same,
which we were especially surprised to see given that
this method has been shown to be robust for 360 de-
gree RGB datasets when an approximate parameter
prior is supplied. Our initial guess as to why this failed
was because COLMAP uses a different coordinate sys-
tem from that of NeRF–. This is a known problem, as
some models, such as the original NeRF, use a coordi-
nate system known as Normalized Device Coordinates
(NDC), which normalizes every point in the scene to
some range between −1 and 1. As to why the ther-
mal images performed better with 0 initialization, we
presuppose that our coordinate systems were incom-
patible, meaning the initialized R matrices could have
been facing completely away from the scene for some
images. This may lead to worse loss compared to a 0
initialization where at least every image is facing the
scene.

6. Conclusion and Future Work
Overall, we have seen that neural-based parame-

ter estimation methods wholly overcome the challenges
presented when using classical computer vision meth-
ods in applying NeRF to thermal images. Renderings
are overall much better well-formed on both the qual-
itative and quantitative front, as can be seen in our
provided renderings.

In the end, SpicyNeRF failed to generalize to 360
degree scenes, and performed worse than when 0 ini-
tialization was carried out. We are confident however
that this can be easily overcome through a simple co-
ordinate conversion between NDC and world coordi-
nates, assuming our guess that the coordinate system
mismatch is the cause of our poorer results. Immediate
work in the then future can look into making that con-
version, or even adapting the existing model to world
coordinates.

Even if it worked, a major limitation of SpicyN-
eRF is the requirement of a corresponding RGB
dataset, which in many applications is unavailable.
If 360 degree view thermal datasets are to be used
for NeRF, more research must be done in seeing how
ground truth camera parameters can be extracted with
aribtrary initialization. We have shown in this report
that without a corresponding RGB dataset, one is lim-
ited to forward facing scenes only.

Looking further, we believe there to be many addi-
tional hurdles in applying NeRF properly to thermal
images beyond just parameter estimation. The ren-
dering equation used in all of these NeRF variations
was designed to account for how visible light travels
through a medium. Thermal imaging, which is carried
out in the long-wave infrared (LWIR) part of the spec-
trum, may behave quite differently when interacting
with matter. If we are to accurately reconstruct the
surface temperature of the scene rather than matching
the arbitrary color scale used to represent LWIR in our
images, then a more sophisticated rendering premise
and equation may be needed.

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tan-

cik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P. Srinivasan. Mip-nerf: A multiscale repre-
sentation for anti-aliasing neural radiance fields, 2021.
3

[2] John Flynn, Michael Broxton, Paul Debevec, Matthew
DuVall, Graham Fyffe, Ryan Overbeck, Noah Snavely,
and Richard Tucker. Deepview: View synthesis with
learned gradient descent, 2019. 3

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification, 2015. 7

[4] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and
Simon Lucey. Barf: Bundle-adjusting neural radiance
fields, 2021. 3

[5] Lars Mescheder, Michael Oechsle, Michael Niemeyer,
Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function
space, 2019. 3



[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tan-
cik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields
for view synthesis, 2020. 1, 3

[7] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library, 2019. 7

[8] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Fe-
lix Draxler, Min Lin, Fred A. Hamprecht, Yoshua Ben-
gio, and Aaron Courville. On the spectral bias of neu-
ral networks, 2019. 2

[9] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-Motion Revisited. In Conference on
Computer Vision and Pattern Recognition (CVPR),
2016. 2, 3

[10] Vincent Sitzmann, Michael Zollhöfer, and Gordon
Wetzstein. Scene representation networks: Continuous
3d-structure-aware neural scene representations, 2020.
3

[11] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong
Li, Brent Yi, Justin Kerr, Terrance Wang, Alexan-
der Kristoffersen, Jake Austin, Kamyar Salahi, Abhik
Ahuja, David McAllister, and Angjoo Kanazawa. Nerf-
studio: A modular framework for neural radiance field
development. In ACM SIGGRAPH 2023 Conference
Proceedings, SIGGRAPH ’23, 2023. 3

[12] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong
Li, Brent Yi, Justin Kerr, Terrance Wang, Alexander
Kristoffersen, Jake Austin, Kamyar Salahi, et al. Nerf-
studio: A modular framework for neural radiance field
development. arXiv preprint arXiv:2302.04264, 2023.
3

[13] Camillo J Taylor and David J Kriegman. Minimization
on the lie group so (3) and related manifolds. 1994. 3

[14] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and
Victor Adrian Prisacariu. NeRF−−: Neural radi-
ance fields without known camera parameters. arXiv
preprint arXiv:2102.07064, 2021. 2, 3, 7



Appendix: Rendered Novel Views



Figure 11. Rendered novel views using 0 initialization for thermal images.



Figure 12. Rendered novel views using 0 initialization for RGB images.



Figure 13. Rendered novel views using extrinsic initialization for thermal images.


	. Introduction
	. Vanilla NeRF
	. SpicyNeRF🌶️

	. Related Work
	. Parameters Known
	. Parameters Unknown

	. Methodology
	. Classical CV Methods
	. Neural Based Methods

	. Dataset and Features
	. Experiments, Results, and Discussion
	. Classical Techniques
	. Neural Techniques
	. SpicyNeRF🌶️

	. Conclusion and Future Work

