
Approaching the Floor Layout Problem
with Genetic Algorithms and Convex Optimization

Name: Griffin Holt Name: Andrew Zhang
Department of Electrical Engineering Department of Electrical Engineering

Stanford University Stanford University
gholt@stanford.edu azhang82@stanford.edu

Abstract— In this paper we present a preliminary method of
optimizing a floor layout given a set of desired proximity rela-
tions between a number of rooms or cells. The unconstrained
problem is non-convex; however, if a relational constraint is
given for each pair of cells, then the problem becomes convex
and can be solved using standard convex optimization methods.
The problem then becomes how to search this combinatorially
large space to restrain the original problem. We first utilize
the Fruchterman-Reingold algorithm, which models the cells as
point masses connected to one another by springs with spring
constants that correspond to the corresponding proximity
relation. The equilibrium state of this spring-mass system can
then be sampled to produce relational constraints. We can
further leverage this to create a population input to a genetic
algorithm, which can be used to find more optimal solutions in
relation to the objective function. We find in the end that this
procedure gave us a solution that reaches the global optimum
of our objective for our particular problem instance.

Code for this project can be accessed via Github repository:
https://github.com/griffinbholt/Floor-Layout-Optimization.

I. INTRODUCTION

This project is in collaboration with the company Intra-
log1. As one of its services, Intralog sets up warehouses and
distribution centers for other companies. Michael Schulte, a
manager at Intralog, communicated to us that one of the more
time-consuming tasks in facility planning is finding a floor
layout plan that meets certain constraints, especially distance
constraints between different rooms of the warehouse. Some
rooms need to be close to each other because consistent travel
occurs between the areas and, in Mr. Schulte’s words, “travel
time is the heaviest cost in warehouse operations.” Other
rooms need to be as far as from each other as possible; for
example, high-value item storage areas should not be near
any easily accessible large exits (such as a loading dock) for
security purposes.

According to Mr. Schulte, although large companies such
as Amazon and Walmart have the engineering resources and
personnel to properly mathematically optimize warehouse
distribution designs and processes, smaller companies do not
have those same opportunities. In his facility planning course
at Georgia Tech, Mr. Schulte was taught how to design a
floor layout by hand, a process which can take a significant
amount of time (on average, 3-4 possible layouts for a single
warehouse can be produced per hour).

For a given warehouse, if we can specify at least one
relative position (e.g., “the bathroom is to the left of the

1https://intralog.io

office”, or “the docking area is below the storage room)
between each of the rooms, then the problem of determining
a feasible layout can be reduced to a simple convex fea-
sibility problem [1]. We can also add an objective function
minimizing distances between the centroids of each room, as
well as minimum spacing constraints, minimum room areas,
aspect ratio constraints, alignment constraints, symmetry
constraints, similarity constraints, containment constraints,
and distance constraints [1]. (A specific enumeration and
explanation of the objective function and constraints we
include in our problem formulation is included in Section III-
C.)

However, if the N(N−1)
2 relative positions across the N

rooms are unknown, then the problem of determining an
optimal layout becomes NP-hard: it results in a Mixed
Integer Program, requiring combinatorial optimization tech-
niques. For Intralog’s problem in particular, although a list
of relative positions is not known, we do know a list of
N(N−1)

2 proximity preferences on a six-point scale between
each of the N cells. The purpose of this paper is to use
convex optimization techniques, in combination with genetic
algorithms as an intelligent search method, to search the
space of possible relative cell positionings compatible with a
given set of proximity preferences and automate the design
of a floor layout for a given facility.

II. RELATED WORK

Gaue and Meller provide an overview of various algo-
rithms for searching the space of relative positionings to
find optimal facility layouts [2]. Jankovits et al. created a
convex optimization relaxation of the facility layout prob-
lem that achieved promising results for large facilities (i.e.,
facilities with about 30 rooms), but did not perform as well
for facilities with 10-12 rooms [3]. Dunker, Radons, and
Westkämper developed a coevolutionary method for floor
planning of large facilities, whereby rooms are clustered into
groups of rooms first, and then floor planning optimization
is performed with genetic algorithms at two parallel levels
between and within groups [4]. Several groups found genetic
algorithms to be a successful method of searching the
combinatorial space of relative positions [5], [6], [7]. The
largest differences between our work and past work lie in
two respects:

1) the input of our algorithm, which is N(N−1)
2 proximity

preferences of the N rooms in the facility; and

https://github.com/griffinbholt/Floor-Layout-Optimization
https://intralog.io

2) our use of the Fruchterman-Reingold algorithm as an
initialization technique for the chromosomal popula-
tion within the genetic algorithm (see Section IV).

III. PROBLEM FORMULATION

Suppose that we have N rooms or areas C1, . . . , CN that
need to be included in the floor layout design (e.g., the
dock area, the main office, restrooms, storage rooms, etc.).
We will refer to these rooms as cells to stay consistent
with the literature [1]. The overall goal is to identify an
arrangement of these N cells within a proposed building
perimeter that meets necessary operational constraints. We
will also suppose that the the proposed building for the
facility is a rectangle with width W and length L, with its
lower left corner at the origin (0, 0) of the R2 plane.

We will specify the location of each cell i = 1, . . . , N by
four decision variables: the coordinates (xi, yi) of the lower-
left corner of the cell; and the width and height (wi, ℓi) of
the cell. Naturally, we will require that all cells lie inside
the perimeter of the facility, giving us the following linear
inequality constraints:

xi ≥ 0, i = 1, . . . , N (1)
yi ≥ 0, i = 1, . . . , N (2)

xi + wi ≤W, i = 1, . . . , N (3)
yi + ℓi ≤ L, i = 1, . . . , N (4)

We will also suppose that we know the desired proximity
relationships between each of these N rooms. We will frame
these relationships as a fully-connected, undirected graph
G = (C,E), where the nodes C = {C1, . . . , CN} are
each of the N warehouse cells and E represents the set
of labeled edges between each node. Each edge eij has
an accompanied label which represents the desired distance
relationship between cell Ci and cell Cj , on a scale from
a4 (absolutely necessary to be close together) to a−1 (must
be as far apart as possible). The complete scale of labels
is displayed in Table I. The actual numerical scale of these
values will be a heuristic choice in our algorithm.

Edge Label Interpretation
a4 Absolutely necessary to be as close as possible
a3 Especially important to be close
a2 Important to be close
a1 Ordinary closeness
a0 No Preference
a−1 Must be as far apart as possible

TABLE I: The scale of relationship labels for an undirected
edge eij in the graph G. The label describes the desired
closeness of cells Ci and Cj in the final facility layout.

A. Objective Functions

Some of the relationships in the graph G lend themselves
to be good objectives for scoring the quality of a floor layout
plan. For example, if we want to minimize the distance
between two cells Ci and Cj , we can utilize a convex

objective function fij which is the Manhattan (l1) distance
between the center of the cells Ci and Cj :

fij(x,w, y, ℓ) =

∥∥∥∥[xi +
wi

2

yi +
ℓi
2

]
−

[
xj +

wj

2

yj +
ℓj
2

]∥∥∥∥
1

, (5)

We can then use fij to describe a multi-objective function
f that prioritizes the proximity relationships defined by
our graph G. Let Ak represent the set of all edges eij
with a relationship label of ak. Also, let α4 > α3 >
· · · > α0 > α−1 = 0 be heuristic objective weights we
assign to describe the importance of each proximity set
Ak, k = 4, 3, . . . , 0,−1. (Note that α−1 = 0, which assigns
no importance to the corresponding proximity relationships.)
Then, to encourage the proximity relationships to be met, we
introduce the following convex objective function:

f(x,w, y, ℓ) =

4∑
k=0

αk

 ∑
(i,j)∈Ak

fij(x,w, y, ℓ)

 (6)

We do not include A−1 in this objective function, as the
hope is that by prioritizing the proximity of the other pairs
of cells within a limited space, we implicitly discourage the
proximity of pairs of cells included in A−1 (cells that must
be as far apart as possible).

Finally, we want to maximally utilize the space inside
the warehouse (i.e., minimize wasted space between cells,
not accounting for hallways). We can accomplish this by
maximizing a concave objective function h that represents
the sum of the log areas of each cell:

h(x,w, y, ℓ) =

N∑
i=1

[logwi + log ℓi] (7)

All of these objectives can be combined into a single
objective function, which we will use to score a layout. Our
convex objective function which we will aim to minimize is
given by

ϕ(x,w, y, ℓ) = f(x,w, y, ℓ) − λh(x,w, y, ℓ). (8)

where λ > 0 represents the relative importance of max-
imizing utilized area. The value of this hyperparameter is
another algorithm design choice (in addition to the values of
αk, k = 0, . . . , 4) that must be specified.

B. Relative Position Constraints

To ensure that there is no overlap between the boundaries
of each of the cells, we need exactly N(N−1)

2 constraints
defined as follows: for each pair of cells (Ci, Cj), i ̸= j,
exactly one of the following must be true:

1) Ci must be left of Cj ;
2) Cj must be left of Ci;
3) Ci must be below Cj ; or
4) Cj must be below Cj .

However, the space of all such possible relative position-
ings is exponentially large. As stated in Section I, exploring
this space is the primary challenge in identifying an optimal
layout for a given facility.

If we are able to select a set of N(N−1)
2 such constraints,

they are specified mathematically as follows:

xi + wi ≤ xj if Ci is left of Cj (9)
xj + wj ≤ xi if Cj is left of Ci (10)
yi + ℓi ≤ yj if Ci is below Cj (11)
yj + ℓj ≤ yi if Cj is below Ci (12)

C. Other Constraints

In addition to the relative position constraints and the
warehouse boundary constraints, we can implement each of
the following constraints as desired:2

1) Minimum Area: If we want to require cell Ci to have
a minimum area of Ai, then we introduce the following
concave constraint:

logwi + log ℓi ≥ logAi (13)

2) Minimum or Maximum Length/Width: We can impose
minimum or maximum length/width linear constraints for a
specific cell Ci as follows:

wi,lo ≤ wi ≤ wi,hi (14)
ℓi,lo ≤ ℓi ≤ ℓi,hi (15)

3) Minimum or Maximum Aspect Ratios: To prevent any
single room from being to “skinny” in either the horizontal or
vertical directions, we want to impose bounds on the aspect
ratio of each room:

w

ℓ
≤ β,

ℓ

w
≤ β (16)

We can rewrite these two constraints as linear constraints,
as follows:

w − βℓ ≤ 0 (17)
ℓ− βw ≤ 0 (18)

IV. METHODOLOGY

A. Initial Approach: Finding Relative Positions with
Fruchterman-Reingold

As stated earlier, the primary obstacle in producing an
optimal floor layout is the selection of N(N−1)

2 relative
positions between the N cells of the warehouse. If these
relative positions are specified, then we only have to solve the
convex optimization problem defined by the objective func-
tion ϕ(x, y, w, ℓ) in Equation (8), the boundary constraints
(1), the relative position constraints, and any of the other

2There are many more types of constraints we could include (see [1],
Section 8.8.2), but the ones included here were a good starting point for an
initial design.

accompanying constraints in Section III-C one would wish
to include.

To transform our desired closeness relationship graph G
into a relative positioning, we utilized the Fruchterman-
Reingold algorithm for graph drawing by force-directed
placement [8]. The algorithm takes as input a graph G =
(C,E) with edge weights ω. Each node Ci is treated as a
mass that repels every other node in the graph. Each edge eij
is treated as a spring with spring constant kij proportional
to the edge’s weight ωij . The algorithm then simulates the
dynamic system of the spring network until the positions
reach near equilibrium. The output of the graph is a set
of positions (xi, yi) of each node at equilibrium. Naturally,
nodes with a high edge weight between them will be drawn
closer together, and nodes that are not as well connected will
be farther away. Thus, running the Fruchterman-Reingold
algorithm on our specific desired closeness relationship graph
G (using edge weights ω corresponding to the edge labels)
gives us candidates for the position of each cell Ci in the
graph.

Using the candidate positions, we can then extract rel-
ative positions between the cells (essentially softening the
positions returned by Fruchterman-Reingold) as follows: for
all i ̸= j, if cell Ci is to the left of or below cell Cj

in the Fruchterman-Reingold graph layout, then we impose
that same constraint on our floor layout. For our algorithm
implementation in particular, we include a tolerance level to
measure “to the left of” or “below”; that is, cell Ci must be
to the left of or below Cj by a distance of at least ϵ in order
to include the constraint in our convex optimization problem.
This thins out the number of constraints at least a little bit,
preventing a total ordering of cells from occurring but also
potentially leading to insufficient constraints to prevent cell
overlap: the exact value of ϵ is adjusted to achieve a correct
balance between preventing total ordering and overlap.

In addition, we utilize an algorithm for finding the minimal
equivalent graph of a directed graph [9] to remove redundan-
cies in the set of ≈ N(N−1) constraints as much as possible
(for example, if we know cell C1 is to the left of C2 and
C3, and C2 is to the left of C3, we can simplify these three
constraints into two by only including that C1 is to the left
of C2 and C2 is to the left of C3).

Using the final set of relative position constraints, we then
formulate and solve a single convex optimization problem
using CVXPY [10], [11] to produce a floor layout that
is optimal with respect to ϕ(x, y, w, ℓ) under the given
constraints.

B. More Complete Approach: Genetic Algorithms

For reasons that will become apparent in Section V, our
initial approach was ineffective at creating a layout that
would actually work for an industrial facility. To better
explore the space of possible relative positionings, we elected
to utilize genetic algorithms [12], both because of their
successful use by other researchers in exploring this space
(see Section II) and because of the convenient way in which

the relative positions can be formulated as a “chromosome”
in the genetic algorithm itself.

At a high level, genetic algorithms work as follows:
1) A genome g is defined which represents the space to

be explored;
2) A population P of individuals/chromosomes, each

with a different genome instantiation, is initialized
(either randomly or by some chosen strategy);

3) For T generations:
a) The fitness of each individual in the population

is evaluated by a fitness function;
b) The top-performing individuals are allowed to

survive and/or reproduce;
c) Reproduction occurs via genetic crossover, where

some genes of one parent and another parent are
switched;

d) Mutation of genes in newly produced children
occurs with some probability;

e) The new children replace some proportion of
the low-performing individuals of the previous
generation, maintaining the same number of in-
dividuals |P | within the population.

4) The top-performing individual in the final generation
is returned as the best solution.

Thus, to define a genetic algorithm which allows us to
explore the space of relative position constraints and find a
“best” floor layout, we simply need to define the algorithm’s
genome, the initialization strategy, and the fitness function:

1) Genome: Let g ∈ {L →, L ←, B →, B ←}
N(N−1)

2

represent the genome for our genetic algorithm. Each ele-
ment g(i,j) represents the relative position constraint between
cell Ci and Cj :

• g(i,j) = L→ means that Ci is left of Cj ;
• g(i,j) = L← means that Cj is left of Ci;
• g(i,j) = B → means that Ci is below Cj ; and
• g(i,j) = B ← means that Cj is below Ci.
For example, a genome g for a graph with N = 5

cells could be as follows: (note that the example genome
described below is equivalent to the two directed acyclic
graphs presented in Figure 1)

g(1,2) g(1,3) g(1,4) g(1,5) g(2,3) g(2,4) g(2,5) g(3,4) g(3,5) g(4,5)
B ← L→ B → L→ L→ B → L→ B → L→ L→

2) Initializing the Population P : Building on our initial
approach (described in Section IV-A), we make use of
the Fruchterman-Reingold (FR) algorithm [8] to provide an
initial set of feasible relative positions. As described earlier,
the Fruchterman-Reingold algorithm returns a set of exact
positions for each of the N cells. We extract N(N − 1)

relative positions from these exact positions: N(N−1)
2 left

relative positions, and N(N−1)
2 below relative positions. (An

example is shown in Figure 7.) We then sample half of these
N(N − 1) relative positions to produce a chromosome g as
follows:

1) With probability p = 1
2 , g(i,j) is a left constraint;

otherwise it is a below constraint.

(a) Edge (i, j): Ci is left of
Cj (b) Edge (i, j): Ci is below Cj

Fig. 1: A complementary set of DAGs that are equivalent to
the genome g. Images from an example in [1].

2) If g(i,j) is a left constraint:
• If Ci is left of Cj in the Fruchterman-Reingold

relative positions, then g(i,j) = L←;
• otherwise, g(i,j) = L→.

3) If g(i,j) is a below constraint:
• If Ci is below Cj in the Fruchterman-Reingold

relative positions, then g(i,j) = B ←;
• otherwise, g(i,j) = B →.

Therefore, to completely initialize a population of |P |
individual chromosomes, we run Fruchterman-Riengold |P |
times and, each time, sample half of the returned relative
positions as described above to produce |P | chromosomes.
(The Fruchterman-Reingold algorithm is nondeterministic, as
it depends on the initial positions of the cells. The Python
library we used to run FR determines these initial positions
with a random seed. Thus, this adds a level of diversity to
the resulting population: instead of all chromosomes in the
population being sampled from the same FR graphs, they are
each sampled from a different graph.)

3) Fitness Function: Our fitness function for a given
chromosome g is the optimal value ϕ⋆ of the convex
optimization problem described previously in Section III,
translating the chromosome g into the corresponding N(N−1)

2
relative position constraints (see Section III-B).

If a set of relative position constraints are infeasible, then
the fitness function returns a score of ∞.

V. RESULTS AND DISCUSSION

A. Initial Approach

We implemented this first method on the relationship
graph defined by Figure 5 attached at the end of this
paper. We used the edge weights ω = {100, 50, 25, 10, 5, 0}
corresponding to each respective edge label in Table I. The
multiobjective weighting parameters were αk = 1, k =
0, . . . , 4 and λ = 10 (prioritizing the maximization of the
sum of the log areas h). A visual progression of the algorithm
is presented in Figures 6, 7, and 8 (attached at the end of
the paper). The optimal layout returned by the algorithm is
presented in Figure 2.

As you can see from the figure, this layout–although
optimal according to the algorithm–is far from optimal in
terms of facility floor layout design. There is still too much

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

0

1

2

3

4

5

6

7

8

9

10

Fig. 2: The optimal floor layout returned by our initial
appraoch (using just Fruchterman-Reingold) for the input
relationship graph defined in Figure 5.

wasted space outside of the cells and, as a result, the
design is not terribly practical. This is because the relative
positionings extracted from the Fruchterman-Reingold layout
are too restrictive. Too many relative positions are specified,
which is what places the cells into a column-like and row-
like organization. For example, consider cell C1, which has
empty space above and to the right. If we remove the
constraints that C1 has to be to the left of C0 and below
cells C4, C5, C0, then C1 could expand to fill that entire
space.

In addition, because the Fruchterman-Reingold algorithm
is not deterministic (it depends on a randomization seed),
this layout is only one possible optimal layout that could be
returned by our algorithm. There are many other “optimal”
layouts that could be considered.

B. Genetic Algorithm Approach

For the genetic algorithm, we utilized α4 = 1 and α0 =
α1 = α2 = α3 = 0 for the proximity objective weights (i.e.,
we only included the highest priority proximity relationships
in the objective function – this was because the objective
function became too complex for the CVXPY compiler). We
also utilized λ = 1 (equating the priority of maximizing
total utilized area with minimizing the proximity objectives).
We used a steady-state parent selection strategy, single-point
crossover, and a 5% probability of random gene mutation,
all within the PyGAD [13] genetic algorithm framework. We
initialized the population with |P | = 1000 individuals and
ran the algorithm for T = 100 generations. We experimented
with multiple different sets of constraints to understand their
affect on the final optimal layout. Our best optimal floor
layout returned by the algorithm utilized all the constraints
presented in Section III-C (with β = 5, and wmin = ℓmin =
5). This best layout is presented in Figure 3; the progression
of the best fitness score in the population |P | = 1000 over
all T = 100 generations is presented in Figure 4.

Fig. 3: The optimal floor layout returned by our genetic
algorithm (with the population initalized by Fruchterman-
Reingold) for the input relationship graph defined in Fig-
ure 5.

You will notice that the resulting optimal layout in Fig-
ure 3 strongly resembles what could be an actual building
floor plan. For this particular problem, we aimed for cells C6

and C7, and C7 and C9 to be as close together as possible
(i.e.,A4 = {(6, 7), (7, 9)}): this goal was definitely achieved.
In fact, cells C6 and C7, as well as C7 and C9, are as close
together as is allowed by our included constraint ℓmin ≥ 5:
therefore, we know that f is at a minimum. In addition,
there is no wasted space in the entire layout, which means
that total maximum area (h(x, y, w, ℓ)) was at its maximum
possible value. Thus, we have actually found a globally
optimal solution for our particular constraints and objectives
(this is not universally guaranteed by our algorithm, but is a
nice result for our particular instance).

However, even though this layout is globally optimal for
our specific objective and constraints, it does not mean that
this design is as functional as it could be. For example,

Fig. 4: Best fitness score in the population vs. generations
of the genetic algorithm, for the rendition of the algorithm
that output the final floor layout in Figure 3

certain corners and edges do not line up: it would be
more practical in terms of construction for the corners of
C4, C5, C8, C10 to all line up, or for the top edge of C9 to line
up with the bottom edge of C5. In addition, because two of
our objectives were to minimize the l1-distance between the
centers of cells C7 and C9, as well as the l1-distance between
the centers of cells C6 and C7, the optimal layout squishes
all three of those rooms on top of each other and pushes
them to be as small as possible. These two results suggest
that our objective function and/or constraints may need to be
reworked to better reflect our desires for the building.

An additional drawback for this approach is the amount
of time required to run the genetic algorithm. It took ap-
proximately 2 hours to complete t = 100 generations. The
significant runtime was due to the computational cost of com-
puting the fitness function with the ECOS solver in CVXPY
for each individual at every generation. In addition, you will
notice that all 100 generations were likely unnecessary–the
algorithm converged around 35 iterations.

VI. CONCLUSION

The ultimate goal is to provide Intralog with an inter-
active software tool that utilizes optimization techniques to
automate the design of a facility. Facility designers, such as
Michael Schulte, will be able to input desired constraints into
the software and then the software will attempt to find an
optimal floor layout for the given constraints. This project
was a significant step towards the completion of such a
tool. Our genetic algorithm did produce a globally optimal
floor layout for a facility with N = 11 cells: the layout
both maximized total area used and minimized the distance
between the highest priority cell proximity relationships.

Part of the success of our genetic algorithm may be
due to the use of the Fruchterman-Reingold algorithm to
initialize the population. Fruchterman-Reingold initializa-
tion provides a clear advantage over random initialization:
random initialization has no guarantee of producing any
feasible relative position constraints, whereas we already
know that the relative position constraints sampled from the
results of Fruchterman-Reingold are feasible. Therefore, the
genetic algorithm does not have to waste any time finding
feasible layouts: it can concentrate on simply combining
the best features of the already feasible initial population.
Thus, although our initial approach, which consisted of only
using Fruchterman-Reingold to find a single set of relative
positions, did not return a good floor layout, it ultimately led
us to a better algorithm.

A. Future Work

One of the primary issues with our final optimal layout
was the misaligned corners and edges present within the
final layout. To encourage corners and edges within the
floor layout to align, we conjecture it would be useful to
experiment with adding the following convex function to our

objective function in Equation 8:

q(x, y, w, ℓ) =
∑

(i,j):i<j

[|xi − xj |+ |yi − yj |

+|wi − wj |+ |ℓi + ℓj |] (19)

Minimizing the sum of the absolute differences of each
element in x, y, w, ℓ, respectively, will naturally cluster the
values in x, y, w, ℓ: therefore, including this objective will
hopefully result in the alignment of corners and edges.

An additional issue was the “squished” layout of those
cells which we wanted close together. Fortunately, we believe
that this is just a result of our particular problem instance,
where we only minimized the distances between the high pri-
ority cell relationships (C6, C7) and (C7, C9). By including
all of the proximity relationships (i.e., setting α0, α1, α2, α3

to nonzero values), we may be able to counteract some of
that “squished” behavior. (We were unable to experiment
with this for the time being because the resulting objective
function was too complicated, or too lengthy, for the CVXPY
compiler–experimentation with other solvers and vectoriza-
tion of our objective function and constraints could mitigate
this issue.)

To improve the runtime of the algorithm (currently, ≈
2 hours), it would be beneficial to utilize a faster solver
for the fitness function (at an acceptable cost of accuracy).
Experimentation with multiple solvers will be necessary to
understand the resulting time-accuracy tradeoffs. We also
should experiment with the number of generations of the
genetic algorithm that are required to return a good floor
layout across many different problem instances.

We could also make additional improvements by exper-
imenting with parallelization; loading the fitness function
(finding the optimal objective value ϕ⋆) onto a GPU; a
thorough experimental comparison of our method with the
methods proposed by other researchers (our paper currently
makes no claims about the performance of our algorithm
against theirs – this would require much more experimenta-
tion); and perhaps a combination of several proposed meth-
ods, including our own, to produce a more robust algorithm.
All of these experiments will hopefully create a tool that is
beneficial to Intralog in automating facility layout design.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-
versity Press, March 2004. [Online]. Available: http://www.amazon.
com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521833787

[2] K.-Y. Gau and R. Meller, “An iterative facility layout algorithm,”
International Journal of Production Research, vol. 37, no. 16, pp.
3739–3758, 1999.

[3] I. Jankovits, C. Luo, M. F. Anjos, and A. Vannelli, “A
convex optimisation framework for the unequal-areas facility
layout problem,” European Journal of Operational Research,
vol. 214, no. 2, pp. 199–215, 2011. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0377221711003560

[4] T. Dunker, G. Radons, and E. Westkämper, “A coevolutionary
algorithm for a facility layout problem,” International Journal of
Production Research, vol. 41, no. 15, pp. 3479–3500, 2003. [Online].
Available: https://doi.org/10.1080/0020754031000118125

http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521833787
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521833787
https://www.sciencedirect.com/science/article/pii/S0377221711003560
https://www.sciencedirect.com/science/article/pii/S0377221711003560
https://doi.org/10.1080/0020754031000118125

[5] J. Diego-Mas, M. Santamarina-Siurana, J. Alcaide-Marzal, and
V. Cloquell-Ballester, “Solving facility layout problems with
strict geometric constraints using a two-phase genetic algorithm,”
International Journal of Production Research, vol. 47, no. 6,
pp. 1679–1693, 2009. [Online]. Available: https://doi.org/10.1080/
00207540701666253

[6] M. Mazinani, M. Abedzadeh, and N. Mohebali, “Dynamic facility
layout problem based on flexible bay structure and solving by genetic
algorithm,” The International Journal of Advanced Manufacturing
Technology, vol. 65, 03 2012.

[7] A. McKendall and A. Hakobyan, “An application of an unequal-area
facilities layout problem with fixed-shape facilities,” Algorithms,
vol. 14, no. 11, 2021. [Online]. Available: https://www.mdpi.com/
1999-4893/14/11/306

[8] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing
by force-directed placement,” Software: Practice and Experience,
vol. 21, no. 11, pp. 1129–1164, 1991. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380211102

[9] H. T. Hsu, “An algorithm for finding a minimal equivalent graph of a
digraph,” J. ACM, vol. 22, pp. 11–16, 1975.

[10] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[11] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting
system for convex optimization problems,” Journal of Control and
Decision, vol. 5, no. 1, pp. 42–60, 2018.

[12] V. Chahar, S. Katoch, and S. Chauhan, “A review on genetic algorithm:
Past, present, and future,” Multimedia Tools and Applications, vol. 80,
02 2021.

[13] A. F. Gad, “Pygad: An intuitive genetic algorithm python library,”
2021.

https://doi.org/10.1080/00207540701666253
https://doi.org/10.1080/00207540701666253
https://www.mdpi.com/1999-4893/14/11/306
https://www.mdpi.com/1999-4893/14/11/306
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380211102

Fig. 5: An example relationship chart, from the facility planning course at Georgia Tech, displaying the n(n−1)
2 nearness

preferences between the n = 11 areas required in the facility. The nearness preferences are on a six-point scale, from
A = Absolutely Necessary and X = Not Desirable. The cells are one-indexed.

25

10

25

10

5

10

50

5

5
5

5

10

10

5

10

50

5

5
5

5

10

5
10

10

25

0

5

10

5

50

10

5

5
5

5

25

10

5

5
55

5

5

25

5

100

25

5

2525

100

25 50

50

25

0

1

2
3

4

5

6

7

8

9

10

Fig. 6: The layout produced by running the Fruchterman-Reingold algorithm on our relationship graph G defined in Figure 5,
including the assigned edge weights. The cells are zero-indexed.

0

1

2
3

4

5

6

7

8

9

10

(a) “Left” relative positions: an edge from node i to node j
means that cell Ci is to the left of Cj .

0

1

2
3

4

5

6

7

8

9

10

(b) “Below” relative positions: an edge from node i to node j
means that cell Ci is below Cj .

Fig. 7: Relative positions extracted from the Fruchterman-Reingold layout in Figure 6.

0

1

2
3

4

5

6

7

8

9

10

(a) “Left” relative positions

0

1

2
3

4

5

6

7

8

9

10

(b) “Below” relative positions

Fig. 8: Minimal equivalent graphs of the relative positions in Figure 7 (i.e., all redundant constraints are removed).

	Introduction
	Related Work
	Problem Formulation
	Objective Functions
	Relative Position Constraints
	Other Constraints
	Minimum Area
	Minimum or Maximum Length/Width
	Minimum or Maximum Aspect Ratios

	Methodology
	Initial Approach: Finding Relative Positions with Fruchterman-Reingold
	More Complete Approach: Genetic Algorithms
	Genome
	Initializing the Population P
	Fitness Function

	Results and Discussion
	Initial Approach
	Genetic Algorithm Approach

	Conclusion
	Future Work

	References

