
GAN-BERT for Automated Essay Scoring
Stanford CS224N Custom Project

Griffin Holt
Department of Electrical Engineering

Stanford University
gholt@stanford.edu

Theodore Kanell
Department of Computer Science

Stanford University
tkanell@stanford.edu

Abstract

Every year, millions of individuals take English language proficiency exams, such
as TOEFL and IELTS, for professional and academic development. These exams
are typically graded by human evaluators; automating the evaluation process can
improve both efficiency and fairness of the examinations. Our approach to the
Automated Essay Scoring (AES) task is to implement three variations of the GAN-
BERT architecture: a feed-forward neural network generator; a BERT transformer
generator; and a generator composed of a fine-tined GPT2 language model in
tandem with a BERT transformer. We use a single pre-trained RoBERTa model,
fine-tuned to our task and dataset, for a baseline comparison. All three GAN-BERT
architectures outperformed the baseline model on the test set. The GAN-BERT
models are also able to better differentiate between Low and Medium score essays,
and Medium and High score essays. The GPT2-BERT generator demonstrated the
most evidence of taking advantage of the competitive nature of the GAN structure
to improve both generator and discriminator.

Key Information: Our TA Mentor is Abhinav Garg.

1 Introduction

Essay scoring for standardized examinations can be an arduous and subjective process, often involving
multiple graders whose respective scores are averaged to produce a single final essay examination
score. Grading exam essays can also place a difficult burden on educators, exacerbated especially
by rapid increase of online education. The global English language learning market, in particular,
is expected to reach $69.62 billion by 2029 with a CAGR of 9.5% until that year (Research and
Markets, 2022); for comparison, the smartphone market expects a CAGR of only 7.3% during that
same time (Fortune Business Insights, 2022). Applying recent improvements in NLP to the task of
essay scoring can give English learners a rapid, consistent metric for their essays, especially for tests
like the IELTS or TOEFL, while relieving a burden of overworked and underpaid educators.

Formally, the Automated Essay Scoring (AES) task is defined as follows: given an essay with m
words X = {xi}mi=1, we want to output a single score y that reflects the measure of the essay. For
the ETS Corpus of Non-Native Written English dataset (Blanchard, Daniel et al., 2014) utilized in
this paper, the score range is constrained to only |S| = 3 categories (Low, Medium, and High) and
we therefore frame our specific problem as a classification task.

Previous attempts to create an effective and accurate AES system followed two basic designs: deep
neural network models using either LSTM or CNN architectures using factors such as word length,
spelling errors, or bag of words to featurize essays in a time consuming procedure (Rodriguez et al.,
2019); and transformer-based models, such as BERT (Wang et al., 2022; Dong et al., 2017).

In this paper, we extend the GAN-BERT architecture–a unique adaptation of the Generative Adver-
sarial Network (GAN) (Goodfellow et al., 2020) that incorporates a BERT transformer and was first
introduced by Croce et al. (2020) for various NLP tasks–to the Automated Essay Scoring task. We
anticipate that the GAN-BERT architecture will help our model be more robust in scoring across a

Stanford CS224N Natural Language Processing with Deep Learning

variety of different prompts. We therefore do not create separate models for each prompt, but we
instead utilize a general model for all prompts in our data set.

2 Related Work

2.1 AES Research

Deep Neural Networks using LSTM or CNN architectures have produced excellent models for AES
and are able to automatically learn many intricate features of essays, and therefore require less
pre-computation to generate and design features for the essays (Taghipour and Ng, 2016). However,
best results are obtained by incorporating work intensive handcrafted features (Uto et al., 2020).

Pre-trained language models such as BERT are able to reach state of the art results, with three
papers out performing other deep learning models. All three papers employed additional training
optimization. Cao et al. (2020) utilized domain adversarial training, Yang et al. (2020) combined
regression and ranking for training, and Wang et al. (2022) employed three different levels of
granularity to encapsulate the essay for the model.

2.2 GAN-BERT

Very few researchers have applied GAN networks to NLP tasks and none have applied it to the
AES task. Croce et al. (2017) employed a kernel-based GAN which combined expressive kernels
and deep neural networks to model structured information and learn non-linear decision functions.
Croce et al. (2017) was able to achieve state-of-the-art results in Question Classi�cation, Community
Question-Answering, and Argument Boundary detection. Croce et al. (2020) demonstrated that
applying a semi-supervised GAN on a NLP task can enable the model to achieve high results with far
fewer labeled data points on Sentiment Classi�cation.

3 Approach

We proceed to describe our approach to this task for our novel models–several variations on the
GAN-BERT architecture �rst proposed by Croce et al. (2020)–as well as our approach for the baseline
model–a single pre-trained RoBERTa (Liu et al., 2019) model �ne-tuned to our classi�cation task.

3.1 GAN-BERT Architecture

The GAN-BERT architecture is an adaptation of the Generative Adversarial Network structure
(Goodfellow et al., 2020) that incorporates a BERT transformer and is thus more optimized for NLP
tasks. In the Generative Adversarial Network architecture for a classi�cation task, a discriminator
is trained over(K + 1) classes: its goal is for real examples to be classi�ed into one of the target
categoriesf 1; : : : ; K g and for fake or generated examples to be classi�ed as classK +1 . A generator
is then trained to generate fake examples that deceive the discriminator.

We will now describe the GAN-BERT architecture (see Figures 1) more formally, illustrating how
it combines the traditional GAN architecture and loss functions with a BERT model to address
NLP tasks. LetG denote the generator network andD denote the discriminator network. Let
X k = f x i gm

i =1 represent a real essay from our dataset (see Section 4.1 for details regarding the

Figure 1: The GAN-BERT architecture, as described by Croce et al. (2020), but changed to �t our use
case: the size-constrained essays are passed into the BERT transformer module, and the discriminator
D outputs the essay scoreŷ 2 f Fake; Low; Medium; Highg, whereŷ = Fakesigni�es D identi�ed
the input as generated the generatorG.

2

content and distribution of the essays). Each essayX k is labeled with a human-evaluated score
yk 2 f Low; Medium; Highg = S.

An essayX k is �rst tokenized using WordPiece (Devlin et al., 2018) with a maximum length ofL
tokens. The token sequence is truncated if its length exceedsL and padded if its length is less thanL .
The tokenized sequenceT = [t1; t2; : : : ; tL] is then passed into a pre-trained BERT module which
we also �ne-tuned in advance on the AES task. As suggested by Devlin et al. (2018), we utilize the
CLS hidden statehCLS as our single vector outputvB 2 R768 from the BERT module.

The BERT outputvB is then passed into the discriminator networkD . For our speci�c implementation
of the GAN-BERT architecture, the discriminatorD (see Figure 2d) is a feed-forward neural network
composed of (in order) a dropout layer with dropout probabilityp; a hidden linear layer with an
output dimension of768; a LeakyRELU activation function; an additional dropout layer with dropout
probabilityp; an output linear layer with an output dimension ofjSj + 1 = 4 ; and a softmax layer,
which outputs the �nal probabilities for each of thejSj +1 classes:f Fake; Low; Medium; Highg. The
�nal output of the discriminatorD is the predicted clasŝyk , the class having maximum probability
from the softmax layer.

Separately, “noisy input" is passed into the generatorG. For the AES task, we experiment with
three different generator structures, each of which are described in detail in Section 3.1.2. The exact
de�nition of “noisy input" depends on the structure of the generator itself. Regardless of its internal
structure, the generatorG produces an outputvG 2 R768: a “fake" sample that, ideally, mimics the
outputvB of the BERT module when fed a real essayX . This generator outputvG is then passed
into the discriminatorD and assigned a class probability score and �nal predictionŷ~k .

3.1.1 Loss Functions

Let y denote the true class label for a real essayX . Let v be a generic input to the discriminator
D (i.e.,v may come from a real essayX processed by BERT or from the generatorG). Let pG be
the distribution of inputsv generated from the generatorG. Let pB be the distribution of inputsv
produced by the BERT module processing a real essay. LetpD (ŷ = yjv; y = 0) be the probability
that an inputv associated with the fake class is classi�ed by the discriminatorD as fake. Let
pD (ŷ = yjv; y 2 f 1; 2; 3g) be the probability that an inputv associated with one of the real essay
scores is classi�ed with the correct essay score.

The discriminator loss functioǹD is designed to motivate the discriminator to both differentiate be-
tween real inputsvB and fake inputsvG and assign a correct essay scoreŷk 2 f Low; Medium; Highg
to real inputsvB . The discriminator loss functioǹD is given as̀ D = `D Score + `D RF, where

`D Score = � Ev;y � pB [logpD (ŷ = yjv; y 2 f 1; 2; 3g)] (1)

measures the discriminator's error in score classi�cation for a real essayX ; and

`D RF = � Ev;y � pB [log (1 � pD (ŷ = yjv; y = 0))] � Ev;y � pG [logpD (ŷ = yjv; y = 0)] (2)

measures the discriminator's error in misclassifying real examples as fake and fake examples as real.

In contrast, the generator loss function`G is designed to motivate the generatorG to generate
discriminator inputsvG that are similar to the inputsvB from the distribution of real examplespB .
Let f (v) be the activation of the hidden layer in the discriminatorD for a given inputv. Then, to
encourage the generatorG to produce outputsvG statistically similar to the BERT's outputsvB , we
de�ne thefeature matchinggenerator loss to be

`G feature matching= kEv� pB [f (v)] � Ev� pG [f (v)]k2
2 : (3)

This feature matching loss technique was suggested by Salimans et al. (2016) for traditional GANs
and implemented by Croce et al. (2020) in their original GAN-BERT architecture. The complete
generator loss functioǹG is then given bỳ G = `G feature matching+ `G caught, where

`G caught = � Ev;y � pG [log (1 � pD (ŷ = yjv; y = 0))] (4)

directly penalizes the generatorG for producing fake examples that were “caught" (identi�ed as
fake) by the discriminatorD . In a code implementation, all expectations (for`D and`G) are taken
empirically.

3

3.1.2 Generators

We will now describe the structures of the three variants of generatorsG1; G2; G3 that we imple-
mented to address the AES task.We note that the G1 generator, described below, was used
by Croce et al. (2020) in the original GAN-BERT paper, butG2 and G3 were our original
contributions. We wrote all code for this project–including the implementation ofG1–from
scratch, referring only to the code from Croce et al. (2020) when mathematical details were
missing from their paper. We will use the termsG1, G2, andG3 to refer to both the individual
generators and the entire GAN-BERT model (the generator combined with its discriminator).

(a)G1 (b) G2 (c) G3 (d) D

Figure 2: The three generator architectures–the Neural Network GeneratorG1; the BERT Generator
G2; and the GPT2-BERT GeneratorG3–and the DiscriminatorD architecture

G1: A Feed-Forward Neural Network

The �rst generator variantG1 (see Figure 2a) is a feed-forward neural network (FFNN) composed
of (in order) a linear layer with an input dimension ofdi = 100 and output dimension ofdh = 768;
a LeakyRELU activation function; a dropout layer with dropout probabilityp; and an output linear
layer with an output dimension ofdo = 768. The FFNN generatorG1 takes as input a noisy vector
z 2 R100; zi � N (0; 1) whose inputs are generated from the standard Gaussian distribution.G1 then
outputs a vectorvG 2 R768 to be passed to the discriminatorD .

G2: A BERT Generator

The second generator variantG2 (see Figure 2b) is a single pre-trained BERT transformer module
(Devlin et al., 2018). Note that this BERT transformer module is separate from the BERT transformer
module which processes real essays (pictured in red in Figure 1). Whereas the parameters of the
BERT transformer module processing real essays are frozen and detached from the gradient, the
parameters of BERT transformer module composingG2 are updated according to the loss function
`G .

To create a “noisy input" to feed into theG2 BERT transformer module, we �rst created a “bag of
words" from all words present in essays in the training set. A random essay~X was then generated
by selectingL = 510 words according to the frequency with which they are present in the training
set essays. Note that each word in~X was selected independently from the same distribution: no
attempt was made at this point to force the words in~X to form a cohesive sentence. This random
essay~X was then tokenized by the WordPiece BERT tokenizer and the resulting token sequence~T
was fed intoG2. Similar to the other BERT module, the outputvG 2 R768 from G2 to be fed into the
discriminator is the CLS hidden statehCLS .

G3: A DistilGPT2-BERT Generator

The third generator variantG3 (see Figure 2c) is another single pre-trained BERT transformer module.
However, this time, we �ne-tuned a pre-trained DistilGPT2 language model (Sanh et al., 2019) to

4

generate a fake essay~X when given one of the eight real essay promptsP1; : : : ; P8. The DistilGPT2
module was �ne-tuned on the real essaysX k in the training set and their respective prompts.

The DistilGPT2-generated essay~X was then tokenized and fed into the BERT transformer module.
The outputvG = hCLS 2 R768 from G3 is again the CLS hidden state of the BERT module.

Note that only the BERT transformer is connected to the gradient; after �ne-tuning the DistilGPT2
language model to generate fake essays from real essay prompts, its parameters are frozen and
detached from the GAN-BERT loss functions.

3.2 Baseline Models: RoBERTa

Our baseline model is a single pre-trained RoBERTa (Liu et al., 2019) model �ne-tuned to our
classi�cation task. We utilize the RoBERTa tokenizer–a byte-level variant of the Byte-Pair Encoding
tokenizer (Sennrich et al., 2016)–to split the essay into a token sequenceT = [t1; t2; : : : ; tL],
truncated or padded to a sequence length ofL = 510. The �nal input representation is then the sum
of the token embeddings, segmentation embeddings, and position embeddings. The RoBERTa model
then outputs a logitl 2 RN from which we can generate an output predictionŷ = arg max i =1 ;:::; 3 l i .
Our loss function for �ne-tuning the pre-trained model to this task is Cross Entropy Loss.

The pre-trained RoBERTa parameters were downloaded from HuggingFace, but all other parts
of the approach described above were implemented by us from scratch with pertinent libraries.

4 Experiments

4.1 Data

Our models (baseline and GAN-BERT) were trained on the ETS Corpus of Non-Native Written
English (Blanchard, Daniel et al., 2014), a compilation of 12,100 English essays written by speakers
of 11 non-English native languages (1,100 essays for each language) across 8 different essay prompts
as part of the international academic English language pro�ciency exam, TOEFL. The dataset was
developed speci�cally for native language identi�cation, but, as acknowledged by its authors, can be
used for other tasks (such as AES).

As stated earlier, each essayX k is labeled with a human-evaluated scoreyk 2
f Low; Medium; Highg = S. The training set is composed ofn = 9900 essays, and the devel-
opment and test sets are each composed of~n = 1100 essays. The distribution of essays prompts
P1; : : : ; P8and score categoriesLow; Medium; Low for the training, development, and test sets are
presented in Table 1 and Table 2, respectively.

Prompt Frequencies
Train Dev Test

P1 0.1383 0.1382 0.1227
P2 0.1312 0.1091 0.1300
P3 0.1168 0.0845 0.1336
P4 0.1222 0.1282 0.1436
P5 0.1382 0.1527 0.1018
P6 0.0783 0.0645 0.1036
P7 0.1383 0.1645 0.1236
P8 0.1368 0.1582 0.1409

Table 1: Distribution of essay prompts for the
training, development, and test sets

Score Frequencies
Train Dev Test

Low 0.1080 0.1200 0.1173
Medium 0.5420 0.5436 0.5491

High 0.3500 0.3364 0.3336

Table 2: Distribution of essay scores for the
training, development, and test sets

Because of the imbalance of the three score classes in the dataset, we also experimented with
incorporating class weightswi ; i = 1 ; : : : ; jSj into our loss functions for both the GAN-BERT
architecture and our RoBERTa baseline modules. The weightwi for classi 2 S is given by

wi =
n

jSj
P n

k=1 1f yk = ig
: (5)

Incorporating the class weights into the GAN-BERT loss functions simply changed the computation
of `D Score to a weighted empirical mean. To incorporate the class weights into the baseline RoBERTa
model, we simply used Weighted Cross Entropy Loss.

5

4.2 Evaluation Method

Our primary evaluation metric for the performance of our models on the AES task is the Quadratic
Weighted Kappa (QWK) score (Cohen, 1968). This score is frequently used to compare the per-
formance of an automated grading system against human graders and is the standard for AES
performance comparison (Wang et al., 2022). The details of computing QWK are outlined in
Section 4.2.1 further below.

In addition to measuring the QWK performance of our models on the AES task, we also measured the
performance of each GAN-BERT model's discriminatorD in identifying “real" versus “fake" (i.e.,
generated by a generatorG) inputs. We measured each model's Real-Fake Classi�cation Accuracy,
Real-Fake Precision, and Real-Fake Recall to understand how well each generatorG was able to
mimic real examples (and thereby, hopefully, improve the discriminator's ability to distinguish
between each score class).

4.2.1 Quadratic Weighted Kappa (QWK)

The details of computing QWK are outlined below:

Let O 2 RjSj�j Sj be the confusion matrix associated with the model's score classi�cationsŷk 2
S; k = 1 ; : : : ; n and the actual scoresyk 2 S; k = 1 ; : : : ; n. By convention (Pedregosa et al., 2011),
Oij is equal to the number of essays known to have scoreyk = i and predicted to have scoreŷk = j
by the model. Then, normalizeO to get ~O = 1P

i;j O ij
Oij 2 RjSj�j Sj .

Let W 2 RjSj�j Sj be a weight matrix de�ned entrywise asWij = (i � j)2

(jSj� 1) 2 . The weight matrix gives
partial credit in the �nal QWK score to the model for proximity to the correct label (e.g., if the model
guessedMediumwhen the essay was actually labeledHigh, it is penalized less than if it had classi�ed
the essay as Low).

Let a; b 2 RjSj be count vectors de�ned entrywise such thatai is the number of essays with an
actual scoreyk = i , andbi is the number of essays predicted to have scoreŷk = i . Then, let
E = abT 2 RjSj�j Sj , and normalize it to get~E = 1P

i;j E ij
E 2 RjSj�j Sj .

Finally, the Quadratic Weighed Kappa score� for model performance is given by

� = 1 �

P
i;j Wij ~Oij

P
i;j Wij ~E ij

: (6)

4.3 Experimental details

For each of the GAN-BERT models, we utilized the Adam optimizer with a learning rate of� =
0:0002. We trainedG1 for 5000epochs with a batch size ofB1 = 100, G2 for 20 epochs with a
batch size ofB2 = 24, andG3 for 10epochs with a batch size ofB3 = 9 . The training process for
each GAN-BERT model took between 45 minutes (forG1) and 2-3 hours (forG2 andG3).

For the baseline RoBERTa model, we used the Adam optimizer with a learning rate of� = 2 � 10� 5,
a batch size ofB = 16, and a weight decay of� = 0 :01. We were only able to train for10 epochs
as the checkpoints exhausted the memory. Given the signi�cant number of parameters in RoBERTa
models, training took about two hours.

For the �ne-tuned DistilGPT2 module that fed intoG3, we used the AdamW optimizer with a learning
rate of� = 2 � 10� 5, a batch size ofB = 9 , and trained for10epochs.

For theG1 GAN-BERT model, we experimented with two different dropout ratesp = 0 :1; 0:5 for
the dropout layers. We also experimented with the maximum sequence lengthL = 64; 128; 510for
the tokenized input to the BERT module. ForG2 andG3, we exclusively used a dropout rate of
p = 0 :5 and a maximum sequence length ofL = 510. For all three GAN-BERT models, we also
experimented with the inclusion and exclusion of class weightswi in the loss function to account for
the class imbalance in our dataset.

6

	Introduction
	Related Work
	AES Research
	GAN-BERT

	Approach
	GAN-BERT Architecture
	Loss Functions
	Generators

	Baseline Models: RoBERTa

	Experiments
	Data
	Evaluation Method
	Quadratic Weighted Kappa (QWK)

	Experimental details
	Results

	Analysis
	Conclusions & Future Work
	Appendix
	Additional Figures
	Fake Essays generated by Fine-tuned DistilGPT2 for G3, but classified as Real by D
	DistilGPT2-Generated Essay Example #1: Scored as ``High"
	DistilGPT2-Generated Essay Example #2: Scored as ``Medium"
	DistilGPT2-Generated Essay Example #3: Scored as ``Low"

