Question Detection Using Decision Tree Models

By Griffin Holt, Henry Davis, & Tysum Ruchti

Research

- Focus: Question identification through *sound* rather than *word content*
- Most Commonly Reported Success: Adaboost Random Forests & RNNs
- Used statistics of various audio features
 - Pitch (especially towards the end of a clip) = Important
- Improved results when *sound* analysis combined with *word content* analysis

The Learning Problem

1. Bucket of Models

Smaller Bucket:

- Decision Trees Bigger Bucket:
 - Random Forests

2. Data

Audio files with timestamps at beginning of each question

3. Notion of "Best

- 1. Gini Impurity
- 2. Adaboost Error Function
- 3. ROC AUC Score

1. The Bucket of Models

The Smaller Bucket: Decision Trees

1. The Bucket of Models

Tree Visualization

The Smaller Bucket: Decision Trees

Division of Feature Space Visualization

Chapter 6: Decision Trees. (2019). In A. Géron (Ed.), Hands-On Machine Learning with Scinkit-Learn, Keras & TensorFlow (2nd ed., pp. 175-188). Sebastopol, CA: O'Reilly. Retrieved December 15, 2020, from https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ch06.html#trees_chapter

The Bigger Bucket: Random Forests 1. The Bucket of Models of 200 Decision Trees

28 Videos, each w/ XML files containing annotations

- Rolling Windows of 5-second clips every 500 ms
- ~105,000 total clips created from 28 videos
- Randomly selected 20,000 clips
 - Trained on 16,000 (80%)
 - Tested on 4,000 (20%)

RMS- Frame Energy

Zero-Crossing Rate

Number of Pauses

Power Spectral Density (PSD)

$$\int_{t_1}^{t_2} |e^{(-i2\pi ft)}x(t)|^2 dt$$

Spectral Balance (1 to 2kHz) vs (0 to 0.5kHz)

Signal Intensity

$$10\log_{10}\left(\frac{1}{4\times10^{-10}(t_2-t_1)}\int_{t_1}^{t_2}x^2(t)\,dt\right)$$

Fundamental Frequency

Mel Frequency Cepstral Coefficients (MFCC)

Input Variables

Jitter Shimmer Root Mean Square (RMS) Frame Energy Zero-Crossing Rate # of Pauses Pause Length Power Spectral Density	X	MeanStandard DeviationMedianMaximumMinimumRangeSkewKurtosis	X	Full 5-Second Clip Last 500 Milliseconds	=	363 Possib for each 5-5	le Variables Second Clip
Spectral Balance		Kurtosis	-	Last 200 Milliseconds			
Signal Intensity	-	Least-Squares: Slope, Offset, MSE	We chose a subset of these				
Fundamental Frequency	-	First-Last Pts Line: Slope, Offset, MSE				194 Selected	Variables for
MFCC Coefficients (Default = 13)		% of Rising Slopes			each 5-Second Clip		

3. Notion of "Best"

- 1. Gini Impurity
- 2. Adaboost Error Function
- 3. ROC AUC Score

3. Notion of "Best": Gini Impurity

$$G(k) = \sum_{i=1}^{J} P(i)(1 - P(i))$$

3. Notion of "Best": Adaboost Error Function

Adaboost Algorithm for Finding a Random Forest Model

Chapter 7: Ensemble Learning and Random Forests. (2019). In A. Géron (Ed.), Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow (2nd ed., pp. 189-212). Sebastopol, CA: O'Reilly. AdaBoost Error Function

3. Notion of "Best": ROC-AUC

towardsdatascience.com

Methods

- 1. Grid Search on hyperparameters
 - a. Gini Impurity vs. Entropy
 - b. Max. Depth of the Trees
 - c. Learning Rate (0.25, 0.5, 0.75)
- 2. 5-Fold Cross Validation
- 3. Tools Used
 - a. Praat
 - b. Parselmouth
 - c. Scikit-Learn

Results

Most Important Features

Importance	Audio Feature	Statistic	Clip Portion	Decrease in Gini Impurity
1	Fundamental Frequency f0	Median	Last 500 Milliseconds	0.384219106
2	Fundamental Frequency f0	Minimum	Last 200 Milliseconds	0.38409663
3	Signal Intensity	Standard Deviation	Full Clip	0.288251239
4	Fundamental Frequency f0	Standard Deviation	Last 500 Milliseconds	0.195265416
5	Fundamental Frequency f0	% of Rising Slopes	Full Clip	0.059541905
6	6th MFCC	Mean	Last 500 Milliseconds	0.054253965
7	Signal Intensity	% of Rising Slopes	Last 200 Milliseconds	0.051263641
8	3rd MFCC	Standard Deviation	Full Clip	0.050303281
9	2nd MFCC	Mean	Full Clip	0.040921364
10	11th MFCC	Mean	Last 500 Milliseconds	0.0406494
11	Signal Intensity	Median	Last 500 Milliseconds	0.040223961
12	Fundamental Frequency f0	Range	Last 500 Milliseconds	0.040138624
13	9th MFCC	Mean	Full Clip	0.027013746
14	Fundamental Frequency f0	Slope of the First-Last Line	Full Clip	0.026454863
15	Fundamental Frequency f0	Mean	Last 500 Milliseconds	0.020519628
16	12th MFCC	Mean	Last 500 Milliseconds	0.016024721
17	Fundamental Frequency f0	Slope of the Least-Squares Line	Last 200 Milliseconds	0.015291915

Performance acc. to Notion of "Best"

On Test Sample of 4000 clips:

ROC AUC Score: 0.5134		Actual: "Question"	Actual: "Not a Question"	
Overall Accuracy Score: 88.6%	Predicted: "Question"	13 (True Positive)	4 (False Positive)	
"Question" Acc. Score: 2.8%				
"Not Question" Acc. Score: 99.9%	Predicted: "Not a Question"	452 (False Negative)	3531 (<i>True Negative</i>)	

Future Work to Improve the Model

- Train on more even proportion of questions vs. non-questions
- Use all ~105,000 clips that we had (requires a lot of time)
- Use only most important features to make the model simpler
- Experiment with better data orientation techniques
- Run a larger combination of Grid Search hyperparameters
 - Ex: Clip Sizes, Clip Periods, Learning Rates, Max. Depth, Max. # of Features, etc.
- Combine with word content analysis already created by the MTC group

Thank You