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Abstract 

The Traveling Salesman Problem (TSP) is a widely studied computational problem. This paper 

walks through the process of designing and implementing an Ant Colony Optimization (ACO) 

algorithm to solve a TSP. We discuss the natural phenomenon behind ACO and how this is 

turned into an algorithm via pseudocode. The process of parameter selection, including a section 

in which each of the five variables 𝛼, 𝛽, 𝜌, k, and Q, is highlighted with tests showing that these 

variables will produce locally optimal results (as far as our limited testing proves) when the cost 

function c = f(𝛼, 𝛽, 𝜌, k, Q) is set to c = f(.8, 2, .2, 100, 1000). We compare ACO to both a 

Greedy and Branch-and-Bound approach to solving TSP and find that for problem size n ≤ 15, 

Branch-and-Bound performed slightly better than our ACO algorithm (82.47% of Greedy vs 

85.62%). However, ACO performs significantly better (≥ 5% better) than Branch-and-Bound in 

problem sizes approximately 20-150. After 150, the two algorithms begin to converge to the 

Greedy algorithms results. Time and space complexity of both Greedy and ACO algorithms are 

discussed with the time complexity being O(n3) and O(wkn2) respectively, where n = number of 

cities, k = number of ants, and w = the rate of the ACO implementation’s convergence. 

1. Introduction 

The Ant Colony Optimization Algorithm (ACO), first published in 1996 by Marco Dorigo, is a 

nature-inspired, probabilistic approach used to solve computational and optimization problems 

that can be reduced to finding a lowest cost path through a graph. One such problem is the well-

known Traveling Salesman Problem (TSP). The purpose of this report is to describe, first, how 

ACO is used as a technique to solve TSP; second, the pros and cons of the approach; and third, 

the results we achieve on problems of size 15-250 cities. Specifically, the Ant System variation–

the first of all ACO algorithms and a variation designed specifically for TSP [5]–is the algorithm 

that will be discussed. We have previously implemented both a Greedy and Branch-and-Bound 

approach to solve TSP and hypothesized that the ACO algorithm would produce more optimal 

results in a shorter amount of time than both of these approaches to the exact same problems.  

While the Greedy approach creates routes purely by looking at the cost of each edge, our ACO 

algorithm uses edge cost as well as feedback from previous tours to determine which path to 

take. This led us to believe that we would produce better results with ACO than with the Greedy 

algorithm. We will first describe our greedy algorithm to give a basis for later comparison. 

Branch-and-Bound pseudocode will not be included in this report. 



2. Algorithm Explanation 

2.1 How the Greedy Algorithm Works 

The greedy algorithm we constructed is defined by the pseudocode below: 

2.1.1 Theoretical Time Complexity 

The greedy implementation will have a worst-case time and space complexity of O(n3). The 

greedy algorithm works by using every node as the starting city. Then we find the cheapest path 

to travel from the current city. Finding the minimum cost at each node is an O(n) operation. Then 

we will use the node we traveled to as the current node and repeat the process until we reach a 

dead end or a complete solution. This will be repeated a maximum of O(n) times. After we 

calculate all the possible solutions, we will select the one with the cheapest cost. 

Time and Space Complexity: O(n3) 

2.2 Deciding which Advanced Algorithmic Approach to Use 

As a team, we considered three different advanced approaches to the Traveling Salesman 

Problem: Ant Colony Optimization, the k-opt heuristic, and the recently published approximation 

algorithm [1] that beat the previous record for the metric Traveling Salesman Problem. 

Ultimately, we decided to implement the Ant Colony Optimization algorithm because we found 

it fascinating that the algorithm simulates a real-world biological process to approximate a 

solution to the TSP. 



Our primary resource for learning about Ant Colony Optimization algorithms was Wikipedia’s 

entry on the topic [5]. As we were studying the concept, we discovered that there are many 

different types of ACO algorithms, including Ant System (AS), Ant Colony System (ACS), 

Elitist Ant System, Max-min Ant System (MMAS), Rank-based Ant System (ASrank), 

Continuous Orthogonal Ant Colony (COAC), and Recursive Ant Colony Optimization. We 

opted to implement the Ant System (AS) variation [2], it being the most basic form upon which 

the others are predicated. 

2.3 How the Ant Colony Optimization Algorithm (ACO) Works 

In the real-world, ant colonies send out forager ants [4] to travel to various locations for food, 

water, and other various resources. As each forager ant travels, it leaves behind pheromones that 

mark where it has traveled. In addition, forager ants tend to follow trails that already have some 

level of pheromone, since these paths are more likely to lead to the locations of already 

discovered resources. Over time, the shortest paths to resources acquire a greater level of 

pheromones and the ants collectively travel along those shortest paths. Ant Colony Optimization 

algorithms take advantage of this phenomenon by simulating the ant behavior of leaving behind 

pheromones on known paths. 

The Ant System (AS) variation of the ACO algorithm is defined as follows [5]: 

1. An “ant colony” of k ants is created and an arbitrary starting city is selected. (The starting 

city is arbitrary because a complete tour can start at any city.) 

2. An initial best-solution-so-far is set to have a cost of infinity. 

3. Until the algorithm terminates according to some termination heuristic: 

a. For each “ant” in the “ant colony”: 

i. The ant starts at the starting city and begins to travel down a path, never 

visiting cities to which it has already been. When it comes to a city, it 

selects the next edge to travel down according to a probabilistic heuristic 

that is based on the amount of pheromone along that edge and the cost of 

the edge itself. This edge selection heuristic is defined further down. The 

ant stops traveling when it reaches a dead end (i.e., when there are no 

remaining edges ahead of the ant that lead to unvisited cities) or when a 

complete tour is found. 

b. For each complete tour that was found by the entire ant colony, pheromones are 

deposited on the edges of that tour according to a pheromone deposit heuristic, 

defined further down. 

c. Out of all the complete tours found by the ant colony in this iteration, the tour 

with the minimum cost is compared against the best-solution-so-far. If the 

minimum-cost tour has a lower cost than the best-solution-so-far, then the best-

solution-so-far is updated to this minimum-cost tour. 



Over the course of the execution of the algorithm, the ants–prompted by the pheromone levels 

that have been placed on previously successful paths–get closer and closer to finding the optimal 

tour in the graph. This process is demonstrated by the graph below: as the number of iterations 

increases, the minimum tour found at each iteration approaches an asymptotic limit at the 

bottom, which we can suppose to be close to optimal–or at least closer to optimal than we started 

with. This graph reflects an execution of the 

algorithm on n = 200 cities. The reader 

will notice that oscillation still occurs 

from iteration to iteration; the 

pheromones do not guarantee that once a 

best-solution-so-far is found that it will 

be found every iteration, as each path is 

chosen probabilistically. After 

approximately 40 iterations, the colony 

begins to approach some bottom limit. 

Given even more iterations to run, the ant 

colony algorithm might have been able to 

find an even better solution. 

As stated in the procedural description above, the AS variation, along with most ACO 

algorithms, depends on three heuristics: an edge selection heuristic, a pheromone deposit 

heuristic, and a termination heuristic. In order for the reader to correctly understand our 

implementation, we describe our definitions of these three heuristics in the subsections below. 

The edge selection heuristic and the pheromone deposit heuristic were both obtained from the 

definitions on Wikipedia [5]; the termination heuristic was an original creation by the members 

of our team. 

2.3.1 Edge Selection Heuristic 

Let us say that an ant has reached city u and there are cities v that the ant is allowed to travel to 

(i.e., the ant has not visited any of the cities v during this iteration and edges exist from u to v). 

Then, the probability that the ant travels down a particular edge (u, vi) is determined by the 

equation 

 

where 𝜏u,vi  is the amount of pheromone on the edge from u to vi ; 𝜂u,vi is equivalent1 to 1 / (du,vi  + 

1) where du,vi is the cost of the edge from u to vi ; 𝛼 ≥ 0 is a heuristic parameter that controls the 

 
1In most implementations [5], 𝜂u,vi  is equivalent to 1 / du,vi  rather than 1 / (du,vi  + 1). However, because edge costs of 

0 are possible when the TSP GUI is set to “Hard” mode, we found it necessary to increment the value of the 

denominator by 1 to prevent divide-by-zero errors. 

Figure 1: Minimum Tours found  
in each ACO Iteration 



influence of the pheromones in the probability computation; and 𝛽 ≥ 0 is a heuristic parameter 

that controls the influence of edge costs in the probability computation.  

Once the probability of each edge (u, vi) is calculated, this probability distribution is then 

sampled to determine which city the ant “chose” to travel to next. Please note that probabilities 

are only calculated for the cities that this ant is allowed to travel to; this combination of allowed 

cities can differ from ant to ant–seeing as how each ant determines a different path 

probabilistically–and therefore, these probabilities must be computed each time an ant moves to 

a new city. 

2.3.2 Pheromone Deposit Heuristic 

After all ants in the ant colony have finished traveling (i.e., either found a complete tour or 

reached a dead end) in a single iteration, the pheromone levels for every edge (ui,vj) in the graph 

are updated according to the following equation: 

 

where 𝜏u,vi  is the amount of pheromone on the edge from u to vi , 𝜌 ∈ (0, 1) is a heuristic 

parameter that controls how much pheromone “evaporates”–as we might expect in a real-world 

situation–at each iteration, and k ≥ 0 is the number of ants in the ant colony. The value Δ𝜏k,u,vi  is 

determined by this secondary equation 

 

where Q ≥ 0 is a heuristic parameter that determines how much pheromone is deposited and Lk is 

the cost of the kth ant’s complete tour. 

 In essence, some percentage 𝜌 of the pheromone amount evaporates from each edge and 

some proportion of pheromone is added to each edge according to the costs of the tours found by 

the ants that the edge was included in. 

2.3.3 Termination Heuristic 

In attempting to define a termination heuristic that would be useful for our implementation of the 

Ant Colony Optimization algorithm, our team brainstormed and produced the following three 

options: 

1. Terminate the algorithm after a predetermined number of iterations. 

2. Terminate the algorithm after the best-solution-so-far has been found X times in a row by 

the ant colony. 



3. Terminate the algorithm after the cost of the minimum tour found by the ant colony in a 

single iteration has been within Y% of the cost of the best-solution-so-far, X times in a 

row. 

However, the first option does not guarantee that an optimal solution will be found or even 

approached asymptotically, nor is it dynamic. A predetermined number of iterations may work 

for some number of cities n < z, but when the number of cities crosses some threshold z, that 

predetermined number of iterations may not be sufficient to approach the optimal solution. 

The second option does guarantee a sort of asymptotic behavior, but the probability of 

termination follows a Poisson distribution, meaning that the probability of termination is 

incredibly low and only increases once you reach a large number of iterations. In other words, 

finding the best-so-far-solution a certain number of times in a row is an incredibly rare event. We 

can see this by looking at the graph in Figure 1 of the ACO simulation on n = 200 cities–even 

when the algorithm approached an asymptotic limit, there was still significant variation in the 

cost of the minimum tour from iteration to iteration. Therefore, because we wanted our algorithm 

to terminate in a reasonable time, we determined to not use this heuristic. 

As a result, we decided to use the third option for our termination heuristic. This third option 

both a) guarantees that an asymptotic limit will be approached and b) that the algorithm will be 

able to terminate within a reasonable time once this asymptote is reached. We ran a few initial 

experiments with varying levels for the ceiling percentage Y and the number of iterations in a 

row X, but quickly narrowed in2 on the following: our algorithm would terminate once the cost 

of the minimum tour had been within +10% of the best-solution-so-far 10 times in a row. 

The graph at right is constructed from the 

same data as Figure 1–an ACO 

simulation on n = 200 cities–but a 

few extra details are included to 

demonstrate just how this 

termination heuristic operates: the 

(iteration, tour cost) points at 

which the best-solution-so-far was 

updated are marked in orange; the 

110% ceiling value of the best-

solution-so-far for each iteration 

is marked with a red line; and the 

region between the 110% ceiling 

values and the best-so-far-values 

is shaded in coral to illustrate the 

 
2 We designed a two-factor experiment testing three values of Y–1%, 5%, and 10%–against three values of X–5 

iterations, 10 iterations, and 15 iterations. However, when we began the experiment with Y = 10%, we found that, 

even at this largest percentage, finding any number of iterations in a row still required a significant length of time. 

Narrowing that minimum window to +5% would take even longer and we wanted the algorithm to complete under 

10 minutes. Therefore, we decided not to bother testing further and we settled on X = 10 iterations because it had 

produced the smallest tour costs out of the three iteration levels. 

Figure 2: Visualization of the regions of allowed variation 
over the course of ACO execution 



variation that is allowed by the algorithm when determining whether an asymptotic limit has 

been reached or not. It is not until the 38th iteration that the best-solution-so-far is updated and 

the subsequent 10 iterations all return a minimum-cost tour with a cost that is less than 110% the 

value of the best-solution-so-far, at which point the algorithm then terminates after the 48th 

iteration. 

2.3.4 Theoretical Time Complexity 

We start our algorithm by initializing the distance and the pheromone arrays. Both of these 

arrays are two-dimensional. The size of these arrays depends on the number of cities in the 

problem, having a O(n2) time and space complexity.  

The time complexity to initialize the ant colony will depend on the number of ants. In our code, 

the number of ants is a constant with a value of 100. The time complexity will be O(k) where k is 

the number of ants.  

When initialized, the ants will receive a reference to the distance and pheromone arrays. 

However, each ant does hold a list and a set. These will store the partial path and the cities that 

the ant has visited.  The max size of each will depend on the number of cities in the problem, for 

a space complexity of O(nk). 

The core part of the algorithm is to send the ants to explore the problem. The time complexity of 

this travel function has a worst case of O(kn2) where n is the number of cities and k the number 

of ants. The other functions called inside the loop also have time complexities of O(n2) or less. 

If all the complete tours found in the iteration are within ten percent of the best-solution-so-far 

then we increase the number of iterations where the solution has been unchanged. Because of the 

inherited non-deterministic nature of the termination heuristic, the processing time is 

unpredictable. 

Thus, the time complexity will depend on a value w, where w is an unknown rate at which the 

solutions found plateau to a local or global minimum as demonstrated in Figure 1 and Figure 2.  

The value of w depends on the constants used on our code: 𝛼, 𝛽, 𝜌, k, and Q. All of these values 

play a part in the value of w. Is this complexity, that makes determining w only feasible 

empirically.  

Time complexity: O(wkn2) 

Space complexity: O(n2 + nk) 

2.4 Determining the Parameters of the ACO 

The Ant Colony Optimization algorithm also requires that we define the constant parameters 𝛼, 

𝛽, 𝜌, k, and Q that were included in the definitions of the edge selection and pheromone deposit 

heuristics. To determine which values of these five parameters would minimize the solutions, we 



conducted a grand total of 195 trials across five separate factorial experiments3. The designs of 

the experiments were original creations by our team, independent of influence from external 

sources. Each of these trials was conducted with the following configurations: the difficulty level 

in the GUI was set to “Hard (Deterministic)”, the seed was set to 20, and the time limit was set to 

60 seconds. 

When designing the order and structure of these experiments, we first realized that the 

pheromone and edge-cost influence coefficients, 𝛼 and 𝛽, were very likely to interact as they are 

both included–nonlinearly–in the probability computation of the edge selection heuristic. 

Therefore, we decided that our first task would be to carry out a two-factor experiment with 

varying levels of 𝛼 and 𝛽.  

The subsequent experiments grew out of this first experiment. After determining appropriate 

values of 𝛼 and 𝛽, we used those 𝛼 and 𝛽 values in the experiment to determine 𝜌. We then used 

the determined values of 𝛼, 𝛽, and 𝜌 in the experiment for k, and then the determined values for 

𝛼, 𝛽, 𝜌, and k in the experiment for Q. 

Before continuing, we would like to add a disclaimer on the effectiveness of our experimental 

process: It is entirely possible that all five coefficients interact with each other, which means that 

there is a possibility–likely a high one–that the values we determined from our experiments only 

locally minimize the solutions found by our ACO implementation. A better combination of 𝛼, 𝛽, 

𝜌, k, and Q likely exists. However, to determine how the coefficients interact would require a 5-

factorial experiment, with many levels for each of the five factors and many replicates conducted 

for each treatment, resulting in an incredibly large grand total of required trials that we did not 

have the time to conduct4. Therefore, we settled for the possibility that this process may have 

only found a local minimum of the cost function c = f(𝛼, 𝛽, 𝜌, k, Q). 

2.4.1 Pheromone and Edge-Cost Influence Coefficients, 𝛼 and 𝛽  

To determine values of 𝛼 and 𝛽 that minimized the cost of the tour returned by our ACO 

algorithm, we designed two experiments: an initial Low-Medium-High two-factor experiment to 

learn something about the basic interaction between 𝛼 and 𝛽 and a more complex two-factor 

experiment that we designed from the knowledge gained from the initial experiment. 

The initial Low-Medium-High experiment was structured as follows: 

1. The effect of two factors were evaluated, 𝛼 and 𝛽, with three levels for each factor: Low 

(0.3), Medium (0.6), and High (0.9). Three replicates were conducted for each treatment, 

resulting in a grand total of 27 trials. 

 
3 The complete data tables for each of these experiments can be found in Appendix A. 
4 Even with only 5 levels for each of the 5 factors–a low number of levels per factor that wouldn’t provide us with 

sufficient data to determine global optima–and 3 replicates per treatment–a much higher number of replicates would 

be needed per treatment to truly decrease the variance in the results–a grand total of 55 ∙ 3 = 9375 trials would need 

to be conducted; with the length of each trial being 60 seconds, such an experiment would require more than 6 days 

to complete. 



2. The number of cities n was set to 20. The values of 𝜌, k, and Q were arbitrarily set to 0.4, 

50, and 1000, respectively. 

A two-way analysis of variance 

(two-way ANOVA) on the 

results of the experiment 

demonstrated that our initial 

understanding was correct: the 

interaction between 𝛼 and 𝛽 is 

significant at a 0.001% level. 

The interaction plot of the 

experiment–featured in Figure 3 

at right–confirms this fact, as the 

lines of the plot are not parallel. 

As can be seen in the interaction 

plot, low values of 𝛼 produced 

higher tour costs whereas higher 

values of 𝛼 produced smaller tour costs. The cost of the tour did not seem to be as sensitive to 

low values of 𝛽. These two facts can also be seen by the color plot and the 3D surface plot in 

Figure 4 below. 

Figure 4: Color Plot and 3D Surface Plot of Mean Cost of Tour vs. 𝛼 and 𝛽 for Low-Medium-High Experiment 

         

As a result of these discoveries, we designed and conducted a more complex two-factor 

experiment. In this second experiment, we only tested for higher values of 𝛼, since we 

determined in the first experiment that low values of 𝛼 tended to produce higher tour costs. We 

also expanded the number of levels to be tested for both 𝛼 and 𝛽 in order to see if we could home 

in on a better local optimum than the combination 𝛼 = 0.9 and 𝛽 = 0.3 had provided in the first 

experiment. 

This second experiment was structured as follows: 

Figure 3: Interaction Plot for Low-Medium-High 𝛼-𝛽  Experiment 



1. The effect of two factors were evaluated, 𝛼 and 𝛽. The 𝛼 factor had five levels–0.6, 0.8, 

1.0, 2.0, and 3.0–and the 𝛽 factor had six levels–0.3, 0.6, 1.0, 2.0, 3.0. Three replicates 

were conducted for each treatment, resulting in a grand total of 90 trials. 

2. The number of cities5 n was set to 30. The values of 𝜌, k, and Q were arbitrarily set to 

0.4, 50, and 1000, respectively. 

Two-way ANOVA on the results of 

this second experiment once again 

demonstrated that the interaction 

between 𝛼 and 𝛽 is significant at a 

0.001% level. In addition to 

confirming this fact, the interaction 

plot of this second experiment–

featured in Figure 5 at right–reveals 

some interesting behavior of the 

system. When 𝛼 = 1.0, the tour cost 

produced seems to converge6 around a 

central–although not minimum–value. 

To understand where the local minima 

in this experiment is located, we refer to the color plot and the 3D surface plot in Figure 6 below. 

The darkest section of the color plot and the lowest point on the surface plot are characterized by 

the point 𝛼 = 0.8 and 𝛽 = 2. 

Figure 6: Color Plot and 3D Surface Plot of Mean Cost of Tour vs. 𝛼 and 𝛽 for Complex Experiment 

 

Thus, for our implementation, we decided to use the values 𝛼 = 0.8 and 𝛽 = 2 for the pheromone 

and edge-cost influence coefficients found in the edge selection heuristic. 

 
5At n = 20, the algorithm was approaching a limit–the reader can see this reflected in the fact that the initial 

experiment returned very similar results for all three levels of 𝛽 when 𝛼 = 0.9. We wanted to produce greater 

variation in the second experiment–we wanted to challenge the algorithm–so we increased the number of cities to 

30. 
6 This convergence is also visible on the 3D surface plot, as a valley occurs at 𝛼 = 1.0. 

Figure 5: Interaction Plot for Complex 𝛼-𝛽  Experiment 



2.4.2 Pheromone Evaporation Coefficient, 𝜌 

To determine a value of 𝜌 that minimized the cost of the tour returned by our ACO algorithm–

with all other parameters held constant–we designed the following single-factor experiment: 

1. The effect of one factor, 𝜌, was evaluated. This factor had nine levels7–0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, and 0.9. Three replicates were conducted for each treatment, resulting in 

a grand total of 27 trials. 

2. The number of cities n was set to 30. The values of 𝛼 and 𝛽–determined by the previous 

experiment–were set to 0.8 and 2, respectively. The values of k and Q were arbitrarily set 

to 50 and 1000, respectively. 

The results of this experiment are plotted in the graph below-right. 

Interestingly enough, a one-way analysis of 

variance (one-way ANOVA) on the 

results of this experiment showed that 

the pheromone evaporation coefficient, 

𝜌, did not have a significant effect on 

the cost of the tour, even at a 10% 

significance level. It is clear from the 

graph that there was a high amount of 

variance within treatments as well. The 

graph also shows a seeming 

convergence around a central–not 

minimum–cost at 𝜌 = 0.6, and a general 

upward trend as the value of 𝜌 increases. 

Despite the fact that one-way ANOVA 

reported the value of 𝜌 to be 

insignificant, we decided to use the value 𝜌 = 0.2 for our implementation, as it produced both the 

minimum actual cost and the minimum mean cost across the entire experiment. 

2.4.3 Size of the Ant Colony, k 

To determine a value of k that minimized the cost of the tour returned by our ACO algorithm–

with all other parameters held constant–we designed the following single-factor experiment: 

1. The effect of one factor, k, was evaluated. This factor had seven levels– 10, 50, 100, 500, 

1000, 5000, 10000. Three replicates were conducted for each treatment, resulting in a 

grand total of 21 trials. 

 
7 These nine levels represent a very complete picture of the spectrum of possible values of 𝜌, since the value 𝜌 must 

be between 0 and 1, as defined in the pheromone deposit heuristic. 

Figure 7: Minimum Tour Costs vs. Pheromone 
Evaporation Coefficient 𝜌 



2. The number of cities n was set to 30. The values of 𝛼, 𝛽, and 𝜌–determined by the 

previous experiment–were set to 0.8, 2, and 0.2, respectively. The value of Q was 

arbitrarily set to 1000. 

A one-way ANOVA analysis 

on the results confirmed that 

the size of the ant colony k has 

an effect on the cost of the tour 

produced by the ACO 

algorithm, at a 0.1% 

significance level. 

The results of this experiment 

also showed a much clearer 

pattern than the previous 

experiment, so much so that we 

decided to run a regression 

analysis on the sampled data to 

extrapolate a model that could 

help us to understand the 

behavior of the ACO system as k changes. The regression analysis produced a 3rd-degree 

polylogarithmic function ĉ(k) that fit the sampled data with an error e ≈ 1.1117. This 3rd-degree 

polylogarithmic function ĉ(k) is displayed in green on the graph at right of the experiment data 

and is defined by the equation below: 

 

Upon further inspection of the data and the model, we realized there was not much difference 

between the costs of k = 100, 500, and 1000; seven out of nine of the points for those values are 

all located within a small “minimum window” that only spans a cost value of 206. Essentially, 

we could choose any of those three k values and we would likely get similar results. However, 

we chose k = 100 because a smaller value of k would decrease the amount of time required for 

each iteration of the ACO algorithm; this would allow us to fit more iterations within a set period 

of time and, therefore, to approach an asymptotic limit much faster for values of n higher than 

30. If we had chosen k = 1000, the time required per iteration when the number of cities n 

reached 200 would have been costly in the time efficiency of the algorithm. 

2.4.4 Pheromone Deposit Coefficient, Q 

To determine a value of Q that minimized the cost of the tour returned by our ACO algorithm–

with all other parameters held constant–we designed the following single-factor experiment: 

1. The effect of one factor, Q, was evaluated. This factor had ten levels–100, 101, 102, 103, 

104, 105, 106, 107, 108, and 109. Three replicates were conducted for each treatment, 

resulting in a grand total of 30 trials. 

Figure 8: Minimum Tour Costs vs. Size of the Ant Colony k 



2. The number of cities n was set to 30. The values of 𝛼, 𝛽, 𝜌, and k–determined by the 

previous experiment–were set to 0.8, 2, 0.2, and 1000, respectively. 

A one-way ANOVA analysis on the results 

confirmed that Q has an effect on the cost of 

the tour produced by the ACO 

algorithm, at a 1-11% significance 

level (practically nothing). 

Similar to the last experiment, a 

small “minimum window” is clearly 

present– spanning a cost value of 400 

this time–wherein nineteen out of 

twenty-one of the data points from Q 

= 103 to Q = 109 are located; in 

addition, there is a significant level of 

variation within this window. This 

asymptotic behavior, visually evident 

in the graph, seems to imply that an 

increase in the value of Q can only 

improve the algorithm to a certain point and no further. 

Out of the seven values of Q that were within this minimum window, we decided to use the 

value Q = 1000 for our algorithm implementation. Although Q = 1000 did not produce the 

absolute minimum mean cost across the data, it was the smallest of the Q values inside the 

“minimum window”. All other values of Q in the minimum window seemed to simply be an 

excessive waste of computer memory and arithmetic complexity when compared to Q = 1000. 

The smaller the value of Q, the simpler our implementation would be. 

  

Figure 9: Minimum Tour Costs vs. Pheromone Deposit 
Coefficient Q 



3. Results 

Table 1: TSP Algorithm Results 

 Random Greedy Branch and Bound Ant Colony Optimization 

Cities Time 

(sec) 

Path 

Length 

Time 

(sec) 

Path 

Length 

% of 

Random 

Time 

(sec) 

Path 

Length 

% of 

Greedy 

Time 

(sec) 

Path 

Length 

% of 

Greedy 

15 0 2 0 11820 54.34 6.9 9748 82.47 2.07 10119 85.62 

30 0.07 41819 0.03 17683 42.29 600 17288 97.77 22.27 14823 83.83 

60 161.86 82884 0.29 26254 31.68 600 26254 100 148.79 24049 91.6 

100 600 TB 1.31 36854 TB 600 36854 100 88.48 35223 95.57 

200 600 TB 13.67 54745 TB 600 54119 98.86 509.4 53241 97.25 

250 600 TB 29.88 62263 TB 600 62263 100 600 63593 102.14 

 

For smaller cities (15 cities), our algorithm performed slightly worse than Branch-and-Bound 

(85.62% of Greedy vs 82.47%). However, for larger numbers of cities, it did better. This may be 

because the Branch-and-Bound algorithm can give priority to states with low cost and that are 

deeper in the state creation process, but when expanded, are followed by states that greatly 

increase the path length and thus do not end up being good solutions. On the other hand, in the 

Ant Colony Optimization, at each step of the path, probability and weights are used to determine 

the next city traveled to. This means that on occasion new paths that may initially seem costly 

but end up being shorter, may be explored. As the graph below shows, the path length produced 

by the Branch-and-Bound algorithm converges to that of the Greedy algorithm as the number of 

cities increases keeping the max runtime constant at 600 seconds. This is because the Branch-

and-Bound uses the Greedy algorithm as its initial best solution so far and in most cases, doesn’t 

have enough time to find a better one. The path lengths produced by the Ant Colony 

Optimization also increase as the number of cities increases, taking the max runtime allotted in 

all of the tests run with 250 cities. In addition, it also begins to perform worse on average than 

the Greedy algorithm, this is likely due to being limited by the time allotted similarly to the 

Branch-and-Bound algorithm. Thus, it is 

likely that the paths produced by the 

Branch-and-Bound algorithm would 

have been shorter if it was allowed to 

run for longer. Similarly, if more time 

was allotted for the Ant Colonization 

Optimization, or changes were made 

to the constants used to determine how 

close a path must be to the best-

solution-so-far for 10 iterations until it 

terminates, the cost of the paths could 

decrease.  

Figure 10: Performance of Ant Colony Optimization  
vs. Branch-and-Bound 



3.1 Screenshots of Typical Examples 

 

 

 

  

Figure 12: Greedy Algorithm - n = 60, Difficulty = Hard, 
Seed = 20 

Figure 11: ACO Algorithm - n = 60, Difficulty = Hard,  
Seed = 20 

Figure 14: Greedy Algorithm - n = 200, Difficulty = Hard, 
Seed = 20 

Figure 13: ACO Algorithm - n = 200, Difficulty = Hard, 
Seed = 20 



4. Discussion 

4.1 Empirical Complexity of Greedy Algorithm 

The expected run time was O(n3). 

This reflects the worst-case 

scenario where for every city 

you will do O(n2) work to find 

the cheapest city you can travel 

to. In reality you will not do 

that much work for every node. 

Some nodes might not be 

connected to each other, and an 

incomplete path will be 

returned. The empirical run 

time is O(0.833 - 0.0485 + 

5.52 * E-04 * n2) where n is 

the number of cities in the 

problem. The empirical run 

time is faster than the expected 

value.  

4.2 Empirical Complexity of the Ant Colony Optimization Algorithm 

The theoretical run time for the AOC 

algorithm is O(wkn2) Where w 

is the rate at which the 

algorithm plateaus to a stable 

solution, k is the number of ants 

and n is the number of cities. 

We fitted a polynomial line to 

describe the behavior of the 

code. The data is described by 

the line 23.3 - 0.737n + 0.0149 

n2. The polynomial element of 

the solution is of the same 

degree as expected and the rate 

at which the solution converges 

would be 0.0149. Although the 

time complexity from other elements is included in that function, the specific value for w can 

only be calculated once other factors are removed. As mentioned before, the non-deterministic 

side of AOC makes it impossible to predict w. But for our model the number of cities will be the 

largest factor for predicting the run time. For large problems our solution will take much longer 

than for smaller problems.  

 

Figure 15: Run Time of the Greedy Algorithm vs. Number of Cities n 

Figure 16: Run Time of the ACO Algorithm vs. Number of Cities n 



4.3 Pros and Cons of the Ant Colony Optimization Algorithm 

Our Ant Colony Optimization algorithm consistently found better solutions than both the Greedy 

and Branch-and-Bound approaches when the number of cities was between 30 and 200. ACO 

has a probabilistic nature. This allows it to explore paths that might not seem optimal at that 

point but can produce a good solution and exit to a local minimum. Another benefit of this 

algorithm is that it is easy to understand and implement.  

One of the cons we found while implementing the Ant Colony Optimization algorithm is that it 

took longer than the Random and Greedy algorithms on small problems. This is due to the 

parameters used to determine whether we have obtained a good solution or not. This brings 

another possible problem; the constants used in the code might be optimal for a certain number 

of cities but perform poorly on different numbers. A possible solution to this problem could be to 

introduce dynamic parameters that depend on the size of the problem. While this could be 

beneficial to the overall runtime, it also introduces more complexity to the value of rate at which 

the algorithm converges to a solution (w).  Additionally, finding good parameters to use as 

constants or designing a good equation to produce the values are time consuming tasks.  

The Ant Colony Optimization algorithm had a good overall performance for the given 

constraints of this project. While it’s probabilistic side can bring a lot of complexity to the code, 

the easy implementation, and possible improvements make it a great tool for finding good 

estimates of complex problems. 

5. Future Work 

Additional work could be done to further optimize the results achieved by an ACO approach to 

solving TSP. One idea that was pursued while developing our algorithm was to create a multi-

threading-based implementation in order to speed up the rate at which the entire ant colony can 

traverse the graph. After running analysis on this multi-threaded approach, it was discovered that 

the overhead for creating and using threads in Python was greater than the benefits we saw up to 

a problem size of 60. However, were this algorithm to be implemented using a different 

programming language (such as C or C++, which both include threading libraries), taking a 

multi-threaded approach could yield more optimal results.  

As mentioned previously, other ACO algorithms have been created, each branching from the 

original Ant System approach that we implemented in this project. These algorithms each have a 

unique spin off that gives weight to different elements of the original Ant System (AS) algorithm 

with the main variation being in how pheromone levels are updated. For example, the Max-Min 

(MMAS) varies from the original AS approach in that rather than having every ant which 

completes a tour update the pheromone levels of the graph, only the global best tour or iteration 

best tour are used in updating the pheromones. Additionally, max and min pheromone levels are 

set and each edge is initialized with the maximum pheromone level which leads to more 

solutions being explored from the beginning. The Ant Colony System (ACS) approach has also 

been shown to be better than the AS approach when solving TSP. ACS allows only the ant that 

returns with the best solution to be used in updating the pheromones after each iteration. It also 

favors the lower-cost edges and uses a local pheromone updating rule during each iteration [5]. 



Using a combination of an Ant Colony Optimization algorithm combined with a Local Search 

Algorithm has been shown to yield better results when tackling TSP [3]. If we were to continue 

working on our algorithm to optimize our results we would explore and analyze using a hybrid 

algorithm. 

Lastly, to improve upon our current algorithm and design we would ideally run a factorial 

experiment with all five variables to determine the best values for our cost function c = f(𝛼, 𝛽, 𝜌, 

k, Q). This would allow us to study the effect of each factor on the response factor as well as the 

effect of the interactions between factors. With the current level of testing we have performed, 

we were only able to confidently assume we have found a local minimum for c but after running 

a 5-factorial experiment we would gain more conclusive results as to what the global minimum 

for c is.  
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Appendix A: Data Tables from Experiments and Algorithm Tests 

Table A-1: Data from Low-Medium-High Two-Factor 𝛼-𝛽 Experiment 

 𝛼 𝛽 Cost of Best Tour Mean Cost of Best 

Tour 

0.3 0.3 16047 

15875.66667 0.3 0.3 15221 

0.3 0.3 16359 

0.3 0.6 15138 

15852.66667 0.3 0.6 16487 

0.3 0.6 15933 

0.3 0.9 15726 

15499.66667 0.3 0.9 15835 

0.3 0.9 14938 

0.6 0.3 14902 
 

15659 
0.6 0.3 16185 

0.6 0.3 15890 

0.6 0.6 16377 

16126.66667 0.6 0.6 15789 

0.6 0.6 16214 

0.6 0.9 12183 

12124.33333 0.6 0.9 12105 

0.6 0.9 12085 

0.9 0.3 12085 

12016.66667 0.9 0.3 12085 

0.9 0.3 11880 

0.9 0.6 12062 

11970.66667 0.9 0.6 12269 

0.9 0.6 11581 

0.9 0.9 11581 

11832.33333 0.9 0.9 11647 

0.9 0.9 12269 

 



Table A-2: Data from Complex Two-Factor 𝛼-𝛽 Experiment 

 𝛼 𝛽 Cost of Best Tour Mean Cost of Best 

Tour 

0.6 0.3 20857 

21971.33333 0.6 0.3 22338 

0.6 0.3 22719 

0.6 0.6 20005 

19412 0.6 0.6 19001 

0.6 0.6 19230 

0.6 0.8 18424 

18459.33333 0.6 0.8 18308 

0.6 0.8 18646 

0.6 1 17592 

17524.33333 0.6 1 17689 

0.6 1 17292 

0.6 2 16302 

16111.66667 0.6 2 16501 

0.6 2 15532 

0.6 3 15687 

15784.33333 0.6 3 15532 

0.6 3 16134 

0.8 0.3 20614 

20215 0.8 0.3 20333 

0.8 0.3 19698 

0.8 0.6 17181 

17784.66667 0.8 0.6 18485 

0.8 0.6 17688 

0.8 0.8 16257 

16792.33333 0.8 0.8 16908 

0.8 0.8 17212 

0.8 1 16125 

16255 0.8 1 16453 

0.8 1 16187 



Table A-2: Data from Complex Two-Factor 𝛼-𝛽 Experiment (cont’d) 

 𝛼 𝛽 Cost of Best Tour Mean Cost of Best 

Tour 

0.8 2 15652 

15644.33333 0.8 2 15675 

0.8 2 15606 

0.8 3 16406 

16236.66667 0.8 3 16018 

0.8 3 16286 

1 0.3 17994 

17591.66667 1 0.3 17263 

1 0.3 17518 

1 0.6 16505 

16520.33333 1 0.6 16731 

1 0.6 16325 

1 0.8 17017 

16538.33333 1 0.8 16408 

1 0.8 16190 

1 1 16379 

16266 1 1 15999 

1 1 16420 

1 2 16335 

16395 1 2 16206 

1 2 16644 

1 3 16331 

16543 1 3 16708 

1 3 16590 

2 0.3 19670 

20521.66667 2 0.3 20149 

2 0.3 21746 

2 0.6 18231 

18788.33333 2 0.6 18841 

2 0.6 19293 



Table A-2: Data from Complex Two-Factor 𝛼-𝛽 Experiment (cont’d) 

 𝛼 𝛽 Cost of Best Tour Mean Cost of Best 

Tour 

2 0.8 19015 

18129 2 0.8 17265 

2 0.8 18107 

2 1 16792 

16738 2 1 16420 

2 1 17002 

2 2 16115 

16326.33333 2 2 16444 

2 2 16420 

2 3 17298 

17360.66667 2 3 18064 

2 3 16720 

3 0.3 21807 

23065.66667 3 0.3 22044 

3 0.3 25346 

3 0.6 20182 

19669.66667 3 0.6 19123 

3 0.6 19704 

3 0.8 17595 

18791.33333 3 0.8 18802 

3 0.8 19977 

3 1 17344 

17478.33333 3 1 17070 

3 1 18021 

3 2 17226 

17276.66667 3 2 18003 

3 2 16601 

3 3 17805 

17128 3 3 17001 

3 3 16578 



Table A-3: Data from Single-Factor 𝜌 Experiment 

 𝜌 Cost of Best Tour Mean Cost of Best Tour 

0.1 16034 

15806.33333 0.1 15705 

0.1 15680 

0.2 15627 

15799 0.2 15950 

0.2 15820 

0.3 16185 

16021 0.3 15824 

0.3 16054 

0.4 15907 

16133 0.4 16215 

0.4 16277 

0.5 16134 

16235.33333 0.5 16199 

0.5 16373 

0.6 16093 

16095.33333 0.6 16134 

0.6 16059 

0.7 16228 

16127.66667 0.7 16202 

0.7 15953 

0.8 16484 

16199.33333 0.8 15811 

0.8 16303 

0.9 16300 

16071 0.9 15971 

0.9 15942 

 

 

 



Table A-4: Data from Single-Factor k Experiment 

 k Cost of Best Tour Mean Cost of Best Tour 

10 16328 

16260.33333 10 16080 

10 16373 

50 16206 

16091.66667 50 16016 

50 16053 

100 15809 

15825.66667 100 15773 

100 15895 

500 15689 

15960.66667 500 16333 

500 15860 

1000 15873 

15711.33333 1000 15732 

1000 15529 

5000 16739 

16592.66667 5000 16380 

5000 16659 

10000 16389 

17008.33333 10000 17398 

10000 17238 

 

 

 

 

 

 

 



Table A-5: Data from Single-Factor Q Experiment 

 Q Cost of Best Tour Mean Cost of Best Tour 

1 18165 

18213.66667 1 18376 

1 18100 

10 17385 

17646 10 17967 

10 17586 

100 16572 

16367.66667 100 16364 

100 16167 

1000 16166 

16083 1000 16141 

1000 15942 

10000 16080 

16011.66667 10000 16168 

10000 15787 

100000 15632 

15889.66667 100000 15886 

100000 16151 

1000000 16050 

16048 1000000 15929 

1000000 16165 

10000000 15574 

15880.66667 10000000 16045 

10000000 16023 

100000000 16137 

16090 100000000 16057 

100000000 16076 

1000000000 15833 

16064 1000000000 16172 

1000000000 16187 

 



Table A-6: Data from TSP Algorithm Tests 

# of 
Cities 

Seed 

Random Greedy Branch-and-Bound ACO 

Time 
(sec) 

Path 
Length 

Time 
(sec) 

Path 
Length 

Time 
(sec) 

Path 
Length 

Time 
(sec) 

Path 
Length 

15 20 0.00 23393 0.00 11072 0.56 9687 2.50 10211 

15 30 0.00 20392 0.00 15704 6.21 10913 2.16 11586 

15 40 0.00 26230 0.00 11331 3.30 9928 1.66 10200 

15 50 0.00 19942 0.00 11800 1.83 10405 2.38 10795 

15 60 0.00 18808 0.00 9191 22.59 7805 1.64 7805 

30 20 0.04 44057 0.03 20395 600.00 19809 18.43 15143 

30 30 0.06 42818 0.03 17367 600.00 17319 13.32 14644 

30 40 0.11 42818 0.03 16128 600.00 16128 15.66 14796 

30 50 0.12 41147 0.04 16760 600.00 16455 22.71 14656 

30 60 0.01 38256 0.03 17767 600.00 16730 41.24 14878 

60 20 600.00 inf 0.42 24622 600.01 24622 41.82 24149 

60 30 148.49 80638 0.26 25123 600.01 25123 40.93 22992 

60 40 6.01 83678 0.26 28400 600.00 28400 38.62 25383 

60 50 38.29 85765 0.27 27024 600.00 27024 22.58 25983 

60 60 16.50 81455 0.26 26103 600.00 26103 600.01 21739 

100 20 600.00 inf 1.30 38093 600.01 38093 91.36 34305 

100 30 600.00 inf 1.31 35565 600.00 35565 86.66 34364 

100 40 600.00 inf 1.33 36569 600.00 36569 108.66 34709 

100 50 600.00 inf 1.29 38915 600.00 38915 77.90 37092 

100 60 600.00 inf 1.31 35130 600.00 35130 77.84 35643 

200 20 600.00 inf 13.37 56227 600.00 53100 607.24 52217 

200 30 600.00 inf 13.69 55583 600.00 55583 582.46 52158 

200 40 600.00 inf 14.25 54090 600.00 54090 474.76 54161 

200 50 600.00 inf 13.46 55158 600.00 55158 424.15 55006 

200 60 600.00 inf 13.58 52665 600.00 52665 458.38 52661 

250 20 600.00 inf 30.12 62517 600.01 62517 601.11 63716 

250 30 600.00 inf 30.59 64090 600.00 64090 600.09 64617 

250 40 600.00 inf 28.97 60787 600.00 60787 600.05 63758 

250 50 600.00 inf 30.27 62132 600.04 62132 600.03 62739 

250 60 600.00 inf 29.45 61790 600.01 61790 600.01 63136 

 


