
Ant Colony Optimization: An Advanced Approach

to the Traveling Salesman Problem

Bronwen May, Elizabeth Greer, Griffin Holt, Kenneth Vargas

C S 312: Algorithm Design & Analysis - Sec. 001 - Team 17

Brigham Young University

Provo, UT, USA

Abstract

The Traveling Salesman Problem (TSP) is a widely studied computational problem. This paper

walks through the process of designing and implementing an Ant Colony Optimization (ACO)

algorithm to solve a TSP. We discuss the natural phenomenon behind ACO and how this is

turned into an algorithm via pseudocode. The process of parameter selection, including a section

in which each of the five variables 𝛼, 𝛽, 𝜌, k, and Q, is highlighted with tests showing that these

variables will produce locally optimal results (as far as our limited testing proves) when the cost

function c = f(𝛼, 𝛽, 𝜌, k, Q) is set to c = f(.8, 2, .2, 100, 1000). We compare ACO to both a

Greedy and Branch-and-Bound approach to solving TSP and find that for problem size n ≤ 15,

Branch-and-Bound performed slightly better than our ACO algorithm (82.47% of Greedy vs

85.62%). However, ACO performs significantly better (≥ 5% better) than Branch-and-Bound in

problem sizes approximately 20-150. After 150, the two algorithms begin to converge to the

Greedy algorithms results. Time and space complexity of both Greedy and ACO algorithms are

discussed with the time complexity being O(n3) and O(wkn2) respectively, where n = number of

cities, k = number of ants, and w = the rate of the ACO implementation’s convergence.

1. Introduction

The Ant Colony Optimization Algorithm (ACO), first published in 1996 by Marco Dorigo, is a

nature-inspired, probabilistic approach used to solve computational and optimization problems

that can be reduced to finding a lowest cost path through a graph. One such problem is the well-

known Traveling Salesman Problem (TSP). The purpose of this report is to describe, first, how

ACO is used as a technique to solve TSP; second, the pros and cons of the approach; and third,

the results we achieve on problems of size 15-250 cities. Specifically, the Ant System variation–

the first of all ACO algorithms and a variation designed specifically for TSP [5]–is the algorithm

that will be discussed. We have previously implemented both a Greedy and Branch-and-Bound

approach to solve TSP and hypothesized that the ACO algorithm would produce more optimal

results in a shorter amount of time than both of these approaches to the exact same problems.

While the Greedy approach creates routes purely by looking at the cost of each edge, our ACO

algorithm uses edge cost as well as feedback from previous tours to determine which path to

take. This led us to believe that we would produce better results with ACO than with the Greedy

algorithm. We will first describe our greedy algorithm to give a basis for later comparison.

Branch-and-Bound pseudocode will not be included in this report.

2. Algorithm Explanation

2.1 How the Greedy Algorithm Works

The greedy algorithm we constructed is defined by the pseudocode below:

2.1.1 Theoretical Time Complexity

The greedy implementation will have a worst-case time and space complexity of O(n3). The

greedy algorithm works by using every node as the starting city. Then we find the cheapest path

to travel from the current city. Finding the minimum cost at each node is an O(n) operation. Then

we will use the node we traveled to as the current node and repeat the process until we reach a

dead end or a complete solution. This will be repeated a maximum of O(n) times. After we

calculate all the possible solutions, we will select the one with the cheapest cost.

Time and Space Complexity: O(n3)

2.2 Deciding which Advanced Algorithmic Approach to Use

As a team, we considered three different advanced approaches to the Traveling Salesman

Problem: Ant Colony Optimization, the k-opt heuristic, and the recently published approximation

algorithm [1] that beat the previous record for the metric Traveling Salesman Problem.

Ultimately, we decided to implement the Ant Colony Optimization algorithm because we found

it fascinating that the algorithm simulates a real-world biological process to approximate a

solution to the TSP.

Our primary resource for learning about Ant Colony Optimization algorithms was Wikipedia’s

entry on the topic [5]. As we were studying the concept, we discovered that there are many

different types of ACO algorithms, including Ant System (AS), Ant Colony System (ACS),

Elitist Ant System, Max-min Ant System (MMAS), Rank-based Ant System (ASrank),

Continuous Orthogonal Ant Colony (COAC), and Recursive Ant Colony Optimization. We

opted to implement the Ant System (AS) variation [2], it being the most basic form upon which

the others are predicated.

2.3 How the Ant Colony Optimization Algorithm (ACO) Works

In the real-world, ant colonies send out forager ants [4] to travel to various locations for food,

water, and other various resources. As each forager ant travels, it leaves behind pheromones that

mark where it has traveled. In addition, forager ants tend to follow trails that already have some

level of pheromone, since these paths are more likely to lead to the locations of already

discovered resources. Over time, the shortest paths to resources acquire a greater level of

pheromones and the ants collectively travel along those shortest paths. Ant Colony Optimization

algorithms take advantage of this phenomenon by simulating the ant behavior of leaving behind

pheromones on known paths.

The Ant System (AS) variation of the ACO algorithm is defined as follows [5]:

1. An “ant colony” of k ants is created and an arbitrary starting city is selected. (The starting

city is arbitrary because a complete tour can start at any city.)

2. An initial best-solution-so-far is set to have a cost of infinity.

3. Until the algorithm terminates according to some termination heuristic:

a. For each “ant” in the “ant colony”:

i. The ant starts at the starting city and begins to travel down a path, never

visiting cities to which it has already been. When it comes to a city, it

selects the next edge to travel down according to a probabilistic heuristic

that is based on the amount of pheromone along that edge and the cost of

the edge itself. This edge selection heuristic is defined further down. The

ant stops traveling when it reaches a dead end (i.e., when there are no

remaining edges ahead of the ant that lead to unvisited cities) or when a

complete tour is found.

b. For each complete tour that was found by the entire ant colony, pheromones are

deposited on the edges of that tour according to a pheromone deposit heuristic,

defined further down.

c. Out of all the complete tours found by the ant colony in this iteration, the tour

with the minimum cost is compared against the best-solution-so-far. If the

minimum-cost tour has a lower cost than the best-solution-so-far, then the best-

solution-so-far is updated to this minimum-cost tour.

Over the course of the execution of the algorithm, the ants–prompted by the pheromone levels

that have been placed on previously successful paths–get closer and closer to finding the optimal

tour in the graph. This process is demonstrated by the graph below: as the number of iterations

increases, the minimum tour found at each iteration approaches an asymptotic limit at the

bottom, which we can suppose to be close to optimal–or at least closer to optimal than we started

with. This graph reflects an execution of the

algorithm on n = 200 cities. The reader

will notice that oscillation still occurs

from iteration to iteration; the

pheromones do not guarantee that once a

best-solution-so-far is found that it will

be found every iteration, as each path is

chosen probabilistically. After

approximately 40 iterations, the colony

begins to approach some bottom limit.

Given even more iterations to run, the ant

colony algorithm might have been able to

find an even better solution.

As stated in the procedural description above, the AS variation, along with most ACO

algorithms, depends on three heuristics: an edge selection heuristic, a pheromone deposit

heuristic, and a termination heuristic. In order for the reader to correctly understand our

implementation, we describe our definitions of these three heuristics in the subsections below.

The edge selection heuristic and the pheromone deposit heuristic were both obtained from the

definitions on Wikipedia [5]; the termination heuristic was an original creation by the members

of our team.

2.3.1 Edge Selection Heuristic

Let us say that an ant has reached city u and there are cities v that the ant is allowed to travel to

(i.e., the ant has not visited any of the cities v during this iteration and edges exist from u to v).

Then, the probability that the ant travels down a particular edge (u, vi) is determined by the

equation

where 𝜏u,vi is the amount of pheromone on the edge from u to vi ; 𝜂u,vi is equivalent1 to 1 / (du,vi +

1) where du,vi is the cost of the edge from u to vi ; 𝛼 ≥ 0 is a heuristic parameter that controls the

1In most implementations [5], 𝜂u,vi is equivalent to 1 / du,vi rather than 1 / (du,vi + 1). However, because edge costs of

0 are possible when the TSP GUI is set to “Hard” mode, we found it necessary to increment the value of the

denominator by 1 to prevent divide-by-zero errors.

Figure 1: Minimum Tours found
in each ACO Iteration

influence of the pheromones in the probability computation; and 𝛽 ≥ 0 is a heuristic parameter

that controls the influence of edge costs in the probability computation.

Once the probability of each edge (u, vi) is calculated, this probability distribution is then

sampled to determine which city the ant “chose” to travel to next. Please note that probabilities

are only calculated for the cities that this ant is allowed to travel to; this combination of allowed

cities can differ from ant to ant–seeing as how each ant determines a different path

probabilistically–and therefore, these probabilities must be computed each time an ant moves to

a new city.

2.3.2 Pheromone Deposit Heuristic

After all ants in the ant colony have finished traveling (i.e., either found a complete tour or

reached a dead end) in a single iteration, the pheromone levels for every edge (ui,vj) in the graph

are updated according to the following equation:

where 𝜏u,vi is the amount of pheromone on the edge from u to vi , 𝜌 ∈ (0, 1) is a heuristic

parameter that controls how much pheromone “evaporates”–as we might expect in a real-world

situation–at each iteration, and k ≥ 0 is the number of ants in the ant colony. The value Δ𝜏k,u,vi is

determined by this secondary equation

where Q ≥ 0 is a heuristic parameter that determines how much pheromone is deposited and Lk is

the cost of the kth ant’s complete tour.

 In essence, some percentage 𝜌 of the pheromone amount evaporates from each edge and

some proportion of pheromone is added to each edge according to the costs of the tours found by

the ants that the edge was included in.

2.3.3 Termination Heuristic

In attempting to define a termination heuristic that would be useful for our implementation of the

Ant Colony Optimization algorithm, our team brainstormed and produced the following three

options:

1. Terminate the algorithm after a predetermined number of iterations.

2. Terminate the algorithm after the best-solution-so-far has been found X times in a row by

the ant colony.

3. Terminate the algorithm after the cost of the minimum tour found by the ant colony in a

single iteration has been within Y% of the cost of the best-solution-so-far, X times in a

row.

However, the first option does not guarantee that an optimal solution will be found or even

approached asymptotically, nor is it dynamic. A predetermined number of iterations may work

for some number of cities n < z, but when the number of cities crosses some threshold z, that

predetermined number of iterations may not be sufficient to approach the optimal solution.

The second option does guarantee a sort of asymptotic behavior, but the probability of

termination follows a Poisson distribution, meaning that the probability of termination is

incredibly low and only increases once you reach a large number of iterations. In other words,

finding the best-so-far-solution a certain number of times in a row is an incredibly rare event. We

can see this by looking at the graph in Figure 1 of the ACO simulation on n = 200 cities–even

when the algorithm approached an asymptotic limit, there was still significant variation in the

cost of the minimum tour from iteration to iteration. Therefore, because we wanted our algorithm

to terminate in a reasonable time, we determined to not use this heuristic.

As a result, we decided to use the third option for our termination heuristic. This third option

both a) guarantees that an asymptotic limit will be approached and b) that the algorithm will be

able to terminate within a reasonable time once this asymptote is reached. We ran a few initial

experiments with varying levels for the ceiling percentage Y and the number of iterations in a

row X, but quickly narrowed in2 on the following: our algorithm would terminate once the cost

of the minimum tour had been within +10% of the best-solution-so-far 10 times in a row.

The graph at right is constructed from the

same data as Figure 1–an ACO

simulation on n = 200 cities–but a

few extra details are included to

demonstrate just how this

termination heuristic operates: the

(iteration, tour cost) points at

which the best-solution-so-far was

updated are marked in orange; the

110% ceiling value of the best-

solution-so-far for each iteration

is marked with a red line; and the

region between the 110% ceiling

values and the best-so-far-values

is shaded in coral to illustrate the

2 We designed a two-factor experiment testing three values of Y–1%, 5%, and 10%–against three values of X–5

iterations, 10 iterations, and 15 iterations. However, when we began the experiment with Y = 10%, we found that,

even at this largest percentage, finding any number of iterations in a row still required a significant length of time.

Narrowing that minimum window to +5% would take even longer and we wanted the algorithm to complete under

10 minutes. Therefore, we decided not to bother testing further and we settled on X = 10 iterations because it had

produced the smallest tour costs out of the three iteration levels.

Figure 2: Visualization of the regions of allowed variation
over the course of ACO execution

variation that is allowed by the algorithm when determining whether an asymptotic limit has

been reached or not. It is not until the 38th iteration that the best-solution-so-far is updated and

the subsequent 10 iterations all return a minimum-cost tour with a cost that is less than 110% the

value of the best-solution-so-far, at which point the algorithm then terminates after the 48th

iteration.

2.3.4 Theoretical Time Complexity

We start our algorithm by initializing the distance and the pheromone arrays. Both of these

arrays are two-dimensional. The size of these arrays depends on the number of cities in the

problem, having a O(n2) time and space complexity.

The time complexity to initialize the ant colony will depend on the number of ants. In our code,

the number of ants is a constant with a value of 100. The time complexity will be O(k) where k is

the number of ants.

When initialized, the ants will receive a reference to the distance and pheromone arrays.

However, each ant does hold a list and a set. These will store the partial path and the cities that

the ant has visited. The max size of each will depend on the number of cities in the problem, for

a space complexity of O(nk).

The core part of the algorithm is to send the ants to explore the problem. The time complexity of

this travel function has a worst case of O(kn2) where n is the number of cities and k the number

of ants. The other functions called inside the loop also have time complexities of O(n2) or less.

If all the complete tours found in the iteration are within ten percent of the best-solution-so-far

then we increase the number of iterations where the solution has been unchanged. Because of the

inherited non-deterministic nature of the termination heuristic, the processing time is

unpredictable.

Thus, the time complexity will depend on a value w, where w is an unknown rate at which the

solutions found plateau to a local or global minimum as demonstrated in Figure 1 and Figure 2.

The value of w depends on the constants used on our code: 𝛼, 𝛽, 𝜌, k, and Q. All of these values

play a part in the value of w. Is this complexity, that makes determining w only feasible

empirically.

Time complexity: O(wkn2)

Space complexity: O(n2 + nk)

2.4 Determining the Parameters of the ACO

The Ant Colony Optimization algorithm also requires that we define the constant parameters 𝛼,

𝛽, 𝜌, k, and Q that were included in the definitions of the edge selection and pheromone deposit

heuristics. To determine which values of these five parameters would minimize the solutions, we

conducted a grand total of 195 trials across five separate factorial experiments3. The designs of

the experiments were original creations by our team, independent of influence from external

sources. Each of these trials was conducted with the following configurations: the difficulty level

in the GUI was set to “Hard (Deterministic)”, the seed was set to 20, and the time limit was set to

60 seconds.

When designing the order and structure of these experiments, we first realized that the

pheromone and edge-cost influence coefficients, 𝛼 and 𝛽, were very likely to interact as they are

both included–nonlinearly–in the probability computation of the edge selection heuristic.

Therefore, we decided that our first task would be to carry out a two-factor experiment with

varying levels of 𝛼 and 𝛽.

The subsequent experiments grew out of this first experiment. After determining appropriate

values of 𝛼 and 𝛽, we used those 𝛼 and 𝛽 values in the experiment to determine 𝜌. We then used

the determined values of 𝛼, 𝛽, and 𝜌 in the experiment for k, and then the determined values for

𝛼, 𝛽, 𝜌, and k in the experiment for Q.

Before continuing, we would like to add a disclaimer on the effectiveness of our experimental

process: It is entirely possible that all five coefficients interact with each other, which means that

there is a possibility–likely a high one–that the values we determined from our experiments only

locally minimize the solutions found by our ACO implementation. A better combination of 𝛼, 𝛽,

𝜌, k, and Q likely exists. However, to determine how the coefficients interact would require a 5-

factorial experiment, with many levels for each of the five factors and many replicates conducted

for each treatment, resulting in an incredibly large grand total of required trials that we did not

have the time to conduct4. Therefore, we settled for the possibility that this process may have

only found a local minimum of the cost function c = f(𝛼, 𝛽, 𝜌, k, Q).

2.4.1 Pheromone and Edge-Cost Influence Coefficients, 𝛼 and 𝛽

To determine values of 𝛼 and 𝛽 that minimized the cost of the tour returned by our ACO

algorithm, we designed two experiments: an initial Low-Medium-High two-factor experiment to

learn something about the basic interaction between 𝛼 and 𝛽 and a more complex two-factor

experiment that we designed from the knowledge gained from the initial experiment.

The initial Low-Medium-High experiment was structured as follows:

1. The effect of two factors were evaluated, 𝛼 and 𝛽, with three levels for each factor: Low

(0.3), Medium (0.6), and High (0.9). Three replicates were conducted for each treatment,

resulting in a grand total of 27 trials.

3 The complete data tables for each of these experiments can be found in Appendix A.
4 Even with only 5 levels for each of the 5 factors–a low number of levels per factor that wouldn’t provide us with

sufficient data to determine global optima–and 3 replicates per treatment–a much higher number of replicates would

be needed per treatment to truly decrease the variance in the results–a grand total of 55 ∙ 3 = 9375 trials would need

to be conducted; with the length of each trial being 60 seconds, such an experiment would require more than 6 days

to complete.

2. The number of cities n was set to 20. The values of 𝜌, k, and Q were arbitrarily set to 0.4,

50, and 1000, respectively.

A two-way analysis of variance

(two-way ANOVA) on the

results of the experiment

demonstrated that our initial

understanding was correct: the

interaction between 𝛼 and 𝛽 is

significant at a 0.001% level.

The interaction plot of the

experiment–featured in Figure 3

at right–confirms this fact, as the

lines of the plot are not parallel.

As can be seen in the interaction

plot, low values of 𝛼 produced

higher tour costs whereas higher

values of 𝛼 produced smaller tour costs. The cost of the tour did not seem to be as sensitive to

low values of 𝛽. These two facts can also be seen by the color plot and the 3D surface plot in

Figure 4 below.

Figure 4: Color Plot and 3D Surface Plot of Mean Cost of Tour vs. 𝛼 and 𝛽 for Low-Medium-High Experiment

As a result of these discoveries, we designed and conducted a more complex two-factor

experiment. In this second experiment, we only tested for higher values of 𝛼, since we

determined in the first experiment that low values of 𝛼 tended to produce higher tour costs. We

also expanded the number of levels to be tested for both 𝛼 and 𝛽 in order to see if we could home

in on a better local optimum than the combination 𝛼 = 0.9 and 𝛽 = 0.3 had provided in the first

experiment.

This second experiment was structured as follows:

Figure 3: Interaction Plot for Low-Medium-High 𝛼-𝛽 Experiment

1. The effect of two factors were evaluated, 𝛼 and 𝛽. The 𝛼 factor had five levels–0.6, 0.8,

1.0, 2.0, and 3.0–and the 𝛽 factor had six levels–0.3, 0.6, 1.0, 2.0, 3.0. Three replicates

were conducted for each treatment, resulting in a grand total of 90 trials.

2. The number of cities5 n was set to 30. The values of 𝜌, k, and Q were arbitrarily set to

0.4, 50, and 1000, respectively.

Two-way ANOVA on the results of

this second experiment once again

demonstrated that the interaction

between 𝛼 and 𝛽 is significant at a

0.001% level. In addition to

confirming this fact, the interaction

plot of this second experiment–

featured in Figure 5 at right–reveals

some interesting behavior of the

system. When 𝛼 = 1.0, the tour cost

produced seems to converge6 around a

central–although not minimum–value.

To understand where the local minima

in this experiment is located, we refer to the color plot and the 3D surface plot in Figure 6 below.

The darkest section of the color plot and the lowest point on the surface plot are characterized by

the point 𝛼 = 0.8 and 𝛽 = 2.

Figure 6: Color Plot and 3D Surface Plot of Mean Cost of Tour vs. 𝛼 and 𝛽 for Complex Experiment

Thus, for our implementation, we decided to use the values 𝛼 = 0.8 and 𝛽 = 2 for the pheromone

and edge-cost influence coefficients found in the edge selection heuristic.

5At n = 20, the algorithm was approaching a limit–the reader can see this reflected in the fact that the initial

experiment returned very similar results for all three levels of 𝛽 when 𝛼 = 0.9. We wanted to produce greater

variation in the second experiment–we wanted to challenge the algorithm–so we increased the number of cities to

30.
6 This convergence is also visible on the 3D surface plot, as a valley occurs at 𝛼 = 1.0.

Figure 5: Interaction Plot for Complex 𝛼-𝛽 Experiment

2.4.2 Pheromone Evaporation Coefficient, 𝜌

To determine a value of 𝜌 that minimized the cost of the tour returned by our ACO algorithm–

with all other parameters held constant–we designed the following single-factor experiment:

1. The effect of one factor, 𝜌, was evaluated. This factor had nine levels7–0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, and 0.9. Three replicates were conducted for each treatment, resulting in

a grand total of 27 trials.

2. The number of cities n was set to 30. The values of 𝛼 and 𝛽–determined by the previous

experiment–were set to 0.8 and 2, respectively. The values of k and Q were arbitrarily set

to 50 and 1000, respectively.

The results of this experiment are plotted in the graph below-right.

Interestingly enough, a one-way analysis of

variance (one-way ANOVA) on the

results of this experiment showed that

the pheromone evaporation coefficient,

𝜌, did not have a significant effect on

the cost of the tour, even at a 10%

significance level. It is clear from the

graph that there was a high amount of

variance within treatments as well. The

graph also shows a seeming

convergence around a central–not

minimum–cost at 𝜌 = 0.6, and a general

upward trend as the value of 𝜌 increases.

Despite the fact that one-way ANOVA

reported the value of 𝜌 to be

insignificant, we decided to use the value 𝜌 = 0.2 for our implementation, as it produced both the

minimum actual cost and the minimum mean cost across the entire experiment.

2.4.3 Size of the Ant Colony, k

To determine a value of k that minimized the cost of the tour returned by our ACO algorithm–

with all other parameters held constant–we designed the following single-factor experiment:

1. The effect of one factor, k, was evaluated. This factor had seven levels– 10, 50, 100, 500,

1000, 5000, 10000. Three replicates were conducted for each treatment, resulting in a

grand total of 21 trials.

7 These nine levels represent a very complete picture of the spectrum of possible values of 𝜌, since the value 𝜌 must

be between 0 and 1, as defined in the pheromone deposit heuristic.

Figure 7: Minimum Tour Costs vs. Pheromone
Evaporation Coefficient 𝜌

2. The number of cities n was set to 30. The values of 𝛼, 𝛽, and 𝜌–determined by the

previous experiment–were set to 0.8, 2, and 0.2, respectively. The value of Q was

arbitrarily set to 1000.

A one-way ANOVA analysis

on the results confirmed that

the size of the ant colony k has

an effect on the cost of the tour

produced by the ACO

algorithm, at a 0.1%

significance level.

The results of this experiment

also showed a much clearer

pattern than the previous

experiment, so much so that we

decided to run a regression

analysis on the sampled data to

extrapolate a model that could

help us to understand the

behavior of the ACO system as k changes. The regression analysis produced a 3rd-degree

polylogarithmic function ĉ(k) that fit the sampled data with an error e ≈ 1.1117. This 3rd-degree

polylogarithmic function ĉ(k) is displayed in green on the graph at right of the experiment data

and is defined by the equation below:

Upon further inspection of the data and the model, we realized there was not much difference

between the costs of k = 100, 500, and 1000; seven out of nine of the points for those values are

all located within a small “minimum window” that only spans a cost value of 206. Essentially,

we could choose any of those three k values and we would likely get similar results. However,

we chose k = 100 because a smaller value of k would decrease the amount of time required for

each iteration of the ACO algorithm; this would allow us to fit more iterations within a set period

of time and, therefore, to approach an asymptotic limit much faster for values of n higher than

30. If we had chosen k = 1000, the time required per iteration when the number of cities n

reached 200 would have been costly in the time efficiency of the algorithm.

2.4.4 Pheromone Deposit Coefficient, Q

To determine a value of Q that minimized the cost of the tour returned by our ACO algorithm–

with all other parameters held constant–we designed the following single-factor experiment:

1. The effect of one factor, Q, was evaluated. This factor had ten levels–100, 101, 102, 103,

104, 105, 106, 107, 108, and 109. Three replicates were conducted for each treatment,

resulting in a grand total of 30 trials.

Figure 8: Minimum Tour Costs vs. Size of the Ant Colony k

2. The number of cities n was set to 30. The values of 𝛼, 𝛽, 𝜌, and k–determined by the

previous experiment–were set to 0.8, 2, 0.2, and 1000, respectively.

A one-way ANOVA analysis on the results

confirmed that Q has an effect on the cost of

the tour produced by the ACO

algorithm, at a 1-11% significance

level (practically nothing).

Similar to the last experiment, a

small “minimum window” is clearly

present– spanning a cost value of 400

this time–wherein nineteen out of

twenty-one of the data points from Q

= 103 to Q = 109 are located; in

addition, there is a significant level of

variation within this window. This

asymptotic behavior, visually evident

in the graph, seems to imply that an

increase in the value of Q can only

improve the algorithm to a certain point and no further.

Out of the seven values of Q that were within this minimum window, we decided to use the

value Q = 1000 for our algorithm implementation. Although Q = 1000 did not produce the

absolute minimum mean cost across the data, it was the smallest of the Q values inside the

“minimum window”. All other values of Q in the minimum window seemed to simply be an

excessive waste of computer memory and arithmetic complexity when compared to Q = 1000.

The smaller the value of Q, the simpler our implementation would be.

Figure 9: Minimum Tour Costs vs. Pheromone Deposit
Coefficient Q

3. Results

Table 1: TSP Algorithm Results

 Random Greedy Branch and Bound Ant Colony Optimization

Cities Time

(sec)

Path

Length

Time

(sec)

Path

Length

% of

Random

Time

(sec)

Path

Length

% of

Greedy

Time

(sec)

Path

Length

% of

Greedy

15 0 2 0 11820 54.34 6.9 9748 82.47 2.07 10119 85.62

30 0.07 41819 0.03 17683 42.29 600 17288 97.77 22.27 14823 83.83

60 161.86 82884 0.29 26254 31.68 600 26254 100 148.79 24049 91.6

100 600 TB 1.31 36854 TB 600 36854 100 88.48 35223 95.57

200 600 TB 13.67 54745 TB 600 54119 98.86 509.4 53241 97.25

250 600 TB 29.88 62263 TB 600 62263 100 600 63593 102.14

For smaller cities (15 cities), our algorithm performed slightly worse than Branch-and-Bound

(85.62% of Greedy vs 82.47%). However, for larger numbers of cities, it did better. This may be

because the Branch-and-Bound algorithm can give priority to states with low cost and that are

deeper in the state creation process, but when expanded, are followed by states that greatly

increase the path length and thus do not end up being good solutions. On the other hand, in the

Ant Colony Optimization, at each step of the path, probability and weights are used to determine

the next city traveled to. This means that on occasion new paths that may initially seem costly

but end up being shorter, may be explored. As the graph below shows, the path length produced

by the Branch-and-Bound algorithm converges to that of the Greedy algorithm as the number of

cities increases keeping the max runtime constant at 600 seconds. This is because the Branch-

and-Bound uses the Greedy algorithm as its initial best solution so far and in most cases, doesn’t

have enough time to find a better one. The path lengths produced by the Ant Colony

Optimization also increase as the number of cities increases, taking the max runtime allotted in

all of the tests run with 250 cities. In addition, it also begins to perform worse on average than

the Greedy algorithm, this is likely due to being limited by the time allotted similarly to the

Branch-and-Bound algorithm. Thus, it is

likely that the paths produced by the

Branch-and-Bound algorithm would

have been shorter if it was allowed to

run for longer. Similarly, if more time

was allotted for the Ant Colonization

Optimization, or changes were made

to the constants used to determine how

close a path must be to the best-

solution-so-far for 10 iterations until it

terminates, the cost of the paths could

decrease.

Figure 10: Performance of Ant Colony Optimization
vs. Branch-and-Bound

3.1 Screenshots of Typical Examples

Figure 12: Greedy Algorithm - n = 60, Difficulty = Hard,
Seed = 20

Figure 11: ACO Algorithm - n = 60, Difficulty = Hard,
Seed = 20

Figure 14: Greedy Algorithm - n = 200, Difficulty = Hard,
Seed = 20

Figure 13: ACO Algorithm - n = 200, Difficulty = Hard,
Seed = 20

4. Discussion

4.1 Empirical Complexity of Greedy Algorithm

The expected run time was O(n3).

This reflects the worst-case

scenario where for every city

you will do O(n2) work to find

the cheapest city you can travel

to. In reality you will not do

that much work for every node.

Some nodes might not be

connected to each other, and an

incomplete path will be

returned. The empirical run

time is O(0.833 - 0.0485 +

5.52 * E-04 * n2) where n is

the number of cities in the

problem. The empirical run

time is faster than the expected

value.

4.2 Empirical Complexity of the Ant Colony Optimization Algorithm

The theoretical run time for the AOC

algorithm is O(wkn2) Where w

is the rate at which the

algorithm plateaus to a stable

solution, k is the number of ants

and n is the number of cities.

We fitted a polynomial line to

describe the behavior of the

code. The data is described by

the line 23.3 - 0.737n + 0.0149

n2. The polynomial element of

the solution is of the same

degree as expected and the rate

at which the solution converges

would be 0.0149. Although the

time complexity from other elements is included in that function, the specific value for w can

only be calculated once other factors are removed. As mentioned before, the non-deterministic

side of AOC makes it impossible to predict w. But for our model the number of cities will be the

largest factor for predicting the run time. For large problems our solution will take much longer

than for smaller problems.

Figure 15: Run Time of the Greedy Algorithm vs. Number of Cities n

Figure 16: Run Time of the ACO Algorithm vs. Number of Cities n

4.3 Pros and Cons of the Ant Colony Optimization Algorithm

Our Ant Colony Optimization algorithm consistently found better solutions than both the Greedy

and Branch-and-Bound approaches when the number of cities was between 30 and 200. ACO

has a probabilistic nature. This allows it to explore paths that might not seem optimal at that

point but can produce a good solution and exit to a local minimum. Another benefit of this

algorithm is that it is easy to understand and implement.

One of the cons we found while implementing the Ant Colony Optimization algorithm is that it

took longer than the Random and Greedy algorithms on small problems. This is due to the

parameters used to determine whether we have obtained a good solution or not. This brings

another possible problem; the constants used in the code might be optimal for a certain number

of cities but perform poorly on different numbers. A possible solution to this problem could be to

introduce dynamic parameters that depend on the size of the problem. While this could be

beneficial to the overall runtime, it also introduces more complexity to the value of rate at which

the algorithm converges to a solution (w). Additionally, finding good parameters to use as

constants or designing a good equation to produce the values are time consuming tasks.

The Ant Colony Optimization algorithm had a good overall performance for the given

constraints of this project. While it’s probabilistic side can bring a lot of complexity to the code,

the easy implementation, and possible improvements make it a great tool for finding good

estimates of complex problems.

5. Future Work

Additional work could be done to further optimize the results achieved by an ACO approach to

solving TSP. One idea that was pursued while developing our algorithm was to create a multi-

threading-based implementation in order to speed up the rate at which the entire ant colony can

traverse the graph. After running analysis on this multi-threaded approach, it was discovered that

the overhead for creating and using threads in Python was greater than the benefits we saw up to

a problem size of 60. However, were this algorithm to be implemented using a different

programming language (such as C or C++, which both include threading libraries), taking a

multi-threaded approach could yield more optimal results.

As mentioned previously, other ACO algorithms have been created, each branching from the

original Ant System approach that we implemented in this project. These algorithms each have a

unique spin off that gives weight to different elements of the original Ant System (AS) algorithm

with the main variation being in how pheromone levels are updated. For example, the Max-Min

(MMAS) varies from the original AS approach in that rather than having every ant which

completes a tour update the pheromone levels of the graph, only the global best tour or iteration

best tour are used in updating the pheromones. Additionally, max and min pheromone levels are

set and each edge is initialized with the maximum pheromone level which leads to more

solutions being explored from the beginning. The Ant Colony System (ACS) approach has also

been shown to be better than the AS approach when solving TSP. ACS allows only the ant that

returns with the best solution to be used in updating the pheromones after each iteration. It also

favors the lower-cost edges and uses a local pheromone updating rule during each iteration [5].

Using a combination of an Ant Colony Optimization algorithm combined with a Local Search

Algorithm has been shown to yield better results when tackling TSP [3]. If we were to continue

working on our algorithm to optimize our results we would explore and analyze using a hybrid

algorithm.

Lastly, to improve upon our current algorithm and design we would ideally run a factorial

experiment with all five variables to determine the best values for our cost function c = f(𝛼, 𝛽, 𝜌,

k, Q). This would allow us to study the effect of each factor on the response factor as well as the

effect of the interactions between factors. With the current level of testing we have performed,

we were only able to confidently assume we have found a local minimum for c but after running

a 5-factorial experiment we would gain more conclusive results as to what the global minimum

for c is.

6. References

[1] Anna R. Karlin, Nathan Klein, & Shayan Oveis Gharan. (2020). A (Slightly) Improved

Approximation Algorithm for Metric TSP. Retrieved December 10, 2020, from

https://arxiv.org/pdf/2007.01409.pdf

[2] M. Dorigo, V. Maniezzo and A. Colorni, "Ant system: optimization by a colony of

cooperating agents," in IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), vol. 26, no. 1, pp. 29-41, Feb. 1996, doi: 10.1109/3477.484436. Retrieved

December 10, 2020, from http://www.cs.unibo.it/babaoglu/courses/cas05-

06/tutorials/Ant_Colony_Optimization.pdf

[3] Stützle, T., & Dorigo, M. (1999). ACO Algorithms for the Traveling Salesman Problem. In

K. Miettinen, P. Neittaanmäki, J. Periaux, & M. M. Mäkelä (Authors), Evolutionary Algorithms

in Engineering and Computer Science: Recent Advances in Genetic Algorithms, Evolution

Strategies, Evolutionary Programming, Genetic Programming and Industrial Applications (pp. i-

xxiii). Chichester, England: John Wiley & Sons. Retrieved December 10, 2020, from

http://staff.washington.edu/paymana/swarm/stutzle99-eaecs.pdf

[4] Western Exterminator Company. (2020). The ant colony: Structure and roles. Retrieved

December 10, 2020, from https://www.westernexterminator.com/ants/the-ant-colony-structure-

and-roles/

[5] Wikipedia. (2020, December 07). Ant colony optimization algorithms. Retrieved December

10, 2020, from https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

Appendix A: Data Tables from Experiments and Algorithm Tests

Table A-1: Data from Low-Medium-High Two-Factor 𝛼-𝛽 Experiment

 𝛼 𝛽 Cost of Best Tour Mean Cost of Best

Tour

0.3 0.3 16047

15875.66667 0.3 0.3 15221

0.3 0.3 16359

0.3 0.6 15138

15852.66667 0.3 0.6 16487

0.3 0.6 15933

0.3 0.9 15726

15499.66667 0.3 0.9 15835

0.3 0.9 14938

0.6 0.3 14902

15659
0.6 0.3 16185

0.6 0.3 15890

0.6 0.6 16377

16126.66667 0.6 0.6 15789

0.6 0.6 16214

0.6 0.9 12183

12124.33333 0.6 0.9 12105

0.6 0.9 12085

0.9 0.3 12085

12016.66667 0.9 0.3 12085

0.9 0.3 11880

0.9 0.6 12062

11970.66667 0.9 0.6 12269

0.9 0.6 11581

0.9 0.9 11581

11832.33333 0.9 0.9 11647

0.9 0.9 12269

Table A-2: Data from Complex Two-Factor 𝛼-𝛽 Experiment

 𝛼 𝛽 Cost of Best Tour Mean Cost of Best

Tour

0.6 0.3 20857

21971.33333 0.6 0.3 22338

0.6 0.3 22719

0.6 0.6 20005

19412 0.6 0.6 19001

0.6 0.6 19230

0.6 0.8 18424

18459.33333 0.6 0.8 18308

0.6 0.8 18646

0.6 1 17592

17524.33333 0.6 1 17689

0.6 1 17292

0.6 2 16302

16111.66667 0.6 2 16501

0.6 2 15532

0.6 3 15687

15784.33333 0.6 3 15532

0.6 3 16134

0.8 0.3 20614

20215 0.8 0.3 20333

0.8 0.3 19698

0.8 0.6 17181

17784.66667 0.8 0.6 18485

0.8 0.6 17688

0.8 0.8 16257

16792.33333 0.8 0.8 16908

0.8 0.8 17212

0.8 1 16125

16255 0.8 1 16453

0.8 1 16187

Table A-2: Data from Complex Two-Factor 𝛼-𝛽 Experiment (cont’d)

 𝛼 𝛽 Cost of Best Tour Mean Cost of Best

Tour

0.8 2 15652

15644.33333 0.8 2 15675

0.8 2 15606

0.8 3 16406

16236.66667 0.8 3 16018

0.8 3 16286

1 0.3 17994

17591.66667 1 0.3 17263

1 0.3 17518

1 0.6 16505

16520.33333 1 0.6 16731

1 0.6 16325

1 0.8 17017

16538.33333 1 0.8 16408

1 0.8 16190

1 1 16379

16266 1 1 15999

1 1 16420

1 2 16335

16395 1 2 16206

1 2 16644

1 3 16331

16543 1 3 16708

1 3 16590

2 0.3 19670

20521.66667 2 0.3 20149

2 0.3 21746

2 0.6 18231

18788.33333 2 0.6 18841

2 0.6 19293

Table A-2: Data from Complex Two-Factor 𝛼-𝛽 Experiment (cont’d)

 𝛼 𝛽 Cost of Best Tour Mean Cost of Best

Tour

2 0.8 19015

18129 2 0.8 17265

2 0.8 18107

2 1 16792

16738 2 1 16420

2 1 17002

2 2 16115

16326.33333 2 2 16444

2 2 16420

2 3 17298

17360.66667 2 3 18064

2 3 16720

3 0.3 21807

23065.66667 3 0.3 22044

3 0.3 25346

3 0.6 20182

19669.66667 3 0.6 19123

3 0.6 19704

3 0.8 17595

18791.33333 3 0.8 18802

3 0.8 19977

3 1 17344

17478.33333 3 1 17070

3 1 18021

3 2 17226

17276.66667 3 2 18003

3 2 16601

3 3 17805

17128 3 3 17001

3 3 16578

Table A-3: Data from Single-Factor 𝜌 Experiment

 𝜌 Cost of Best Tour Mean Cost of Best Tour

0.1 16034

15806.33333 0.1 15705

0.1 15680

0.2 15627

15799 0.2 15950

0.2 15820

0.3 16185

16021 0.3 15824

0.3 16054

0.4 15907

16133 0.4 16215

0.4 16277

0.5 16134

16235.33333 0.5 16199

0.5 16373

0.6 16093

16095.33333 0.6 16134

0.6 16059

0.7 16228

16127.66667 0.7 16202

0.7 15953

0.8 16484

16199.33333 0.8 15811

0.8 16303

0.9 16300

16071 0.9 15971

0.9 15942

Table A-4: Data from Single-Factor k Experiment

 k Cost of Best Tour Mean Cost of Best Tour

10 16328

16260.33333 10 16080

10 16373

50 16206

16091.66667 50 16016

50 16053

100 15809

15825.66667 100 15773

100 15895

500 15689

15960.66667 500 16333

500 15860

1000 15873

15711.33333 1000 15732

1000 15529

5000 16739

16592.66667 5000 16380

5000 16659

10000 16389

17008.33333 10000 17398

10000 17238

Table A-5: Data from Single-Factor Q Experiment

 Q Cost of Best Tour Mean Cost of Best Tour

1 18165

18213.66667 1 18376

1 18100

10 17385

17646 10 17967

10 17586

100 16572

16367.66667 100 16364

100 16167

1000 16166

16083 1000 16141

1000 15942

10000 16080

16011.66667 10000 16168

10000 15787

100000 15632

15889.66667 100000 15886

100000 16151

1000000 16050

16048 1000000 15929

1000000 16165

10000000 15574

15880.66667 10000000 16045

10000000 16023

100000000 16137

16090 100000000 16057

100000000 16076

1000000000 15833

16064 1000000000 16172

1000000000 16187

Table A-6: Data from TSP Algorithm Tests

of
Cities

Seed

Random Greedy Branch-and-Bound ACO

Time
(sec)

Path
Length

Time
(sec)

Path
Length

Time
(sec)

Path
Length

Time
(sec)

Path
Length

15 20 0.00 23393 0.00 11072 0.56 9687 2.50 10211

15 30 0.00 20392 0.00 15704 6.21 10913 2.16 11586

15 40 0.00 26230 0.00 11331 3.30 9928 1.66 10200

15 50 0.00 19942 0.00 11800 1.83 10405 2.38 10795

15 60 0.00 18808 0.00 9191 22.59 7805 1.64 7805

30 20 0.04 44057 0.03 20395 600.00 19809 18.43 15143

30 30 0.06 42818 0.03 17367 600.00 17319 13.32 14644

30 40 0.11 42818 0.03 16128 600.00 16128 15.66 14796

30 50 0.12 41147 0.04 16760 600.00 16455 22.71 14656

30 60 0.01 38256 0.03 17767 600.00 16730 41.24 14878

60 20 600.00 inf 0.42 24622 600.01 24622 41.82 24149

60 30 148.49 80638 0.26 25123 600.01 25123 40.93 22992

60 40 6.01 83678 0.26 28400 600.00 28400 38.62 25383

60 50 38.29 85765 0.27 27024 600.00 27024 22.58 25983

60 60 16.50 81455 0.26 26103 600.00 26103 600.01 21739

100 20 600.00 inf 1.30 38093 600.01 38093 91.36 34305

100 30 600.00 inf 1.31 35565 600.00 35565 86.66 34364

100 40 600.00 inf 1.33 36569 600.00 36569 108.66 34709

100 50 600.00 inf 1.29 38915 600.00 38915 77.90 37092

100 60 600.00 inf 1.31 35130 600.00 35130 77.84 35643

200 20 600.00 inf 13.37 56227 600.00 53100 607.24 52217

200 30 600.00 inf 13.69 55583 600.00 55583 582.46 52158

200 40 600.00 inf 14.25 54090 600.00 54090 474.76 54161

200 50 600.00 inf 13.46 55158 600.00 55158 424.15 55006

200 60 600.00 inf 13.58 52665 600.00 52665 458.38 52661

250 20 600.00 inf 30.12 62517 600.01 62517 601.11 63716

250 30 600.00 inf 30.59 64090 600.00 64090 600.09 64617

250 40 600.00 inf 28.97 60787 600.00 60787 600.05 63758

250 50 600.00 inf 30.27 62132 600.04 62132 600.03 62739

250 60 600.00 inf 29.45 61790 600.01 61790 600.01 63136

