
Music Genre Classification

Griffin Holt, Kavindu Kusal
C S 472 - Machine Learning
Brigham Young University

Abstract
The objective of the experiments is to develop a
machine-learning model to classify the genre of
a 10-second clip of a song. The possible genres
are: Blues, Classical, Country, Disco, Hip-hop,
Jazz, Metal, Pop, Reggae, and Rock. The dataset
is pulled from the GTZAN public music reposi-
tory; in total, 73 different input features were ex-
tracted from 3000 music samples. Hyperparam-
eter searches, feature reduction experiments, for-
ward selection wrapper experiments, and additional
fine-tuning were conducted to improve the classi-
fication accuracies of nine different models. The
top three performing models were, in order: a Gra-
dient Boost ensemble (86.20%), a Random Forest
ensemble (85.70%), and a Multi-layer Perceptron
(85.17%). The ‘Classical‘ genre was the easiest to
classify; the ‘Rock‘ genre was the most difficult to
classify.

1 Introduction
The primary objective of our project is to develop a machine
learning model to classify the genre of a 10-second clip of a
song. The model will be fed certain audio features extracted
from the clip, after which it will classify the song as one of
ten possible genres: Blues, Classical, Country, Disco, Hip-
hop, Jazz, Metal, Pop, Reggae, and Rock.

2 Methods
2.1 Data Source
We utilized the GTZAN open-source music library which
consists of the 10 different genres (identified previously) with
100 different 30-second samples each, for a total of 1000
samples. This GTZAN dataset is made available by G. Tzane-
takis and P. Cook [Tzanetakis and Cook, 2002] and is hosted
on the Music Analysis, Retrieval and Synthesis for Audio
Signals website [MARSYAS, 2015].

To augment this dataset, we split each 30-second clip into
three 10-second clips, thereby increasing the total number of
samples to 3000. We considered this a reasonable data aug-
mentation method on the assumption that none of the music

samples are likely to have an exactly repeated 10-second re-
frain.

2.2 Feature Extraction
The tempo of each 10-second clip was estimated using Li-
brosa. Thirty-six additional audio features were extracted
from rolling-windowed frames of each 10-second clip (with
each frame being 1024 samples and the hop length of the
rolling windows being 512 frames) using either the Librosa
audio processing library or through a function we wrote our-
selves. We then took the mean and standard deviation of each
of these thirty-six features in order to aggregate them from
vector form, resulting in a total of 73 input features extracted
from each 10-second audio clip.

These thirty-six extracted audio features are listed in Ta-
ble 1 as features 2-37. Precise mathematical definitions of
each feature are not included for brevity’s sake, but can be
found in [Peeters, 2004].

The output label (’Genre’) was included with the GTZAN
dataset [MARSYAS, 2015].

Unknown Values
In the case that one of the 1024-sample frames was ”silent”
(i.e., no sound occurred during the frame), then the computa-
tions of Energy Entropy (Feature No. 4), Band Energy Ratio
(Feature No. 6), and Spectral Flux (Feature No. 12) resulted
in ”divide-by-zero” errors. Only 11 instances (out of the 3000
total instances in our augmented dataset) had such an error
occur, 10 of which were labeled as from the ”Hiphop” genre.
Thus, we decided, in such a case, to assign the mean and stan-
dard deviation values for these features to be 0. A zero value
for both the mean and standard deviation of these three fea-
tures does not occur naturally. Thus, the use of 0 for these
values gives the machine learning models extra information
about these music clips (i.e., that they contain silence is some
part of the song which is evidently more common in hip-hop
music).

2.3 Selected Models
We used Scikit-Learn as our machine learning framework.
We selected nine models with which to experiment, each of
which are listed in Table 2.



No. Feature Abbrev. Type Description
1 Tempo – Time The estimated tempo of the music (in beats per minute, bpm)
2 Amplitude Envelope AE Time The maximum amplitude (infinity-norm) of the signal at each time step
3 Root Mean Square

Energy
RMSE Time The square root of the mean of then squared energy (two-norm) of the

signal at each time step
4 Energy Entropy EE Time The entropy of the energy of the signal at each time step
5 Zero-Crossing Rate

(ZCR)
ZCR Time The number of times that the signal crosses the zero-amplitude line in

a given time step
6 Band Energy Ratio BER Frequency The energy ratio of the different frequency bands
7 Spectral Centroid SCe Frequency A measure of the “center of mass” of the spectrum (calculated via the

Fourier Transform) - it is roughly connected to the “brightness” of a
sound

8 Spectral Bandwidth SB Frequency An indication of how spread a frequency in the music clip is across the
spectrum

9 Spectral Rolloff SR Frequency The frequency below which 99% of the energy of the spectrum is con-
tained

10 Spectral Flatness SFlat Frequency The flatness of the spectrum. It is computed using the ratio between
the geometric and arithmetic means

11 Spectral Contrast SCo Frequency The decibel difference between peaks and valleys in the spectrum
12 Spectral Flux SFlux Frequency A measure of how quickly the spectrum of a signal is changing. It is

calculated by computing the difference between the current spectrum
and that of the previous frame.

13-25 Mel Frequency Cep-
stral Coefficients

MFCC
(1-13)

Frequency-
Time

Coefficients that describe the Mel-Frequency Spectrogram

26-37 Chroma Vector Chroma
(1-12)

Frequency-
Time

Coefficients that describe the chromagram (a description of pitch) of a
sound clip.

Table 1: Complete List of Extracted Audio Features



Model Scikit-Learn Class
Stochastic Gradient ‘SGDClassifier‘
Descent
Logistic Regression ‘LogisticRegression‘
Perceptron ‘Perceptron‘
Multi-layer Perceptron ‘MLPClassifier‘
Decision Tree ‘DecisionTreeClassifier‘
Random Forest ‘RandomForestClassifier‘
Gradient Boosting ‘GradientBoostingClassifier‘
(Decision Trees)
Linear Support ‘LinearSVC‘
Vector Machine
Gaussian Naive ‘GaussianNB‘
Bayes Estimator

Table 2: Selected Machine Learning Models

2.4 Measuring Accuracy
Due to the limited size of our dataset (3000 samples), we
used 10-fold cross validation (through Scikit-Learn’s ‘KFold‘
function and shuffled with a seed of 42) to measure classifi-
cation accuracy rather than separating out a single test set.

Nested Cross-Validation
When conducting hyperparameter search or feature selection
experiments, we utilized a machine learning technique known
as ”nested cross-validation”. The nested cross-validation pro-
cedure is as follows: First, the entire dataset is split using
10-fold cross validation; this is the ”outer” cross-validation.
For each iteration of the outer cross-validation, the test set is
a held-out fold and the training set is the union of the other
9 folds. Then, the hyperparameter search (grid or random)
or the feature selection search is run on the training set us-
ing 4- or 5-fold cross-validation as an accuracy measurement;
this is the ”inner” cross-validation. The model that performed
the best on the ”inner” cross-validation (i.e., the model with
the best hyperparameters or the model trained on the selected
features) is then evaluated against the test set from the outer
cross-validation (i.e., the held-out fold). Performances and
models are reported from each of the 10 fold of the outer
cross-validation.

In terms of its usefulness, nested cross-validation provides
a method by which to reduce bias in hyperparameter tuning
and model selection. The search does not have the opportu-
nity to overfit the entire dataset–it is only exposed to a subset
of the dataset provided by outer cross-validation [Brownlee,
2021].

3 Initial Results
For each of the nine models, we used 10-cross validation
with default hyperparameters in order to get a baseline per-
formance measure. We repeated this procedure three times:
once with unnormalized data, once with min-max normalized
data, and once with max-absolute normalized data. The re-
sults of these experiments are in Table 3.

From these initial results, we can gather a few
key observations. First, notice that the two ensem-
ble approaches–Random Forest and Gradient Boost–already

Models No Normalization Min-Max Max-Absolute
Baseline Accuracy 10.00%
SGD 27.17% 56.23% 55.63%
Logistic Regression 46.10% 72.70% 73.10%
Perceptron 27.40% 56.97% 59.70%
MLP 49.13% 69.37% 70.70%
Decision Tree 60.23% 60.90% 60.40%
Random Forest 83.80% 83.73% 83.73%
Gradient Boost 81.30% 81.80% 81.63%
Linear SVM 41.47% 73.97% 73.90%
Gaussian NB 48.53% 56.73% 56.73%

Table 3: Initial model performances

achieved classification accuracies of more than 80%. Second,
notice that–excluding the tree-based models–normalization
drastically improves the performance of the models. Third,
we see that all of the models (even on unnormalized data)
perform well above the baseline accuracy (10%, as the data is
evenly balanced across all 10 genres).

4 Model Experiments
To improve upon the initial results, we conducted four suc-
cessive sets of experiments: hyperparameter search for all
models using the full feature set; hyperparameter search for
all models using five different PCA-reduced feature sets; for-
ward feature selection; and fine-tuning of the best models.

4.1 Hyperparameter Search with the Full Feature
Set

For each model, we conducted either a grid or random
search on a specified hyperparameter space with nested cross-
validation using the full feature set (i.e., all 73 features).
The hyperparameter spaces (excluding the topologies for
the multi-layer perceptron) for each of our nine models are
specified in Table 4. The tested topologies for the multi-
layer perceptron were: [146], [292], [584], [730], [146, 146],
[292, 292], [584, 584], and [730, 730]. Each experiment was
conducted three times: once with unnormalized data, once
with min-max normalized data, and once with max-absolute
normalized data.

From this experiment, we had a few important observa-
tions. First, the multi-layer perceptron and the stochastic gra-
dient descent both showed a large improvement from their
initial experiment by 13.47 percentage points and 15.67 per-
centage points, respectively. Second, the multi-layer percep-
tron was able to match the performance of the two ensem-
ble methods–Random Forest and Gradient Boost–joining the
group of models that performed with above 80% classifica-
tion accuracy



Model Hyperparameter Space

SGD

loss’: [’hinge’, ’modified huber’, ’squared hinge’,
’squared loss’, ’huber’, ’epsilon insensitive’,
’squared epsilon insensitive’],
’penalty’: [’l2’, ’l1’],
’alpha’: loguniform(0.0001, 0.1),
’learning rate’: [’constant’, ’optimal’, ’invscaling’, ’adaptive’],
’eta0’: loguniform(0.0001, 1)

Logistic Regression

penalty’: [’l2’, ’l1’],
’C’: loguniform(0.01, 100),
’solver’: [’newton-cg’, ’lbfgs’, ’liblinear’, ’sag’, ’saga’],
’multi class’: [’ovr’, ’multinomial’],

Perceptron
penalty’: [’l2’, ’l1’],
’alpha’: loguniform(0.0001, 0.1),
’eta0’: loguniform(0.0001, 1)

MLP

activation’: [’logistic’, ’tanh’, ’relu’],
’solver’: [’lbfgs’, ’sgd’, ’adam’],
’alpha’: [0.00001, 0.0001, 0.001, 0.01, 0.1],
’learning rate’: [’constant’, ’invscaling’, ’adaptive’],
’learning rate init’: [0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1, 10],
’max iter’: [100, 200, 500, 1000, 2000],
’momentum’: [0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9]

Decision Tree

criterion’: [’gini’, ’entropy’],
’splitter’: [’best’, ’random’],
’max depth’: [3, 5, 10, 25, None],
’max features’: [’sqrt’, ’log2’, None]

Random Forest

n estimators’: [50, 100, 150],
’criterion’: [’gini’, ’entropy’],
’max depth’: [5, 10, 25, None],
’max features’: [’sqrt’, ’log2’, None]

Gradient Boost
learning rate’: [0.001, 0.01, 0.1],
’max depth’: [3, 5, 7],
’max features’: [’sqrt’, ’log2’, None]

Linear SVM

penalty’: [’l2’, ’l1’],
’loss’: [’hinge’, ’squared hinge’],
’max iter’: [1000, 2000],
’C’: [0.1, 1, 10]

Gaussian NB var smoothing’: loguniform(1e-10, 1e-5)”

Table 4: Defined Hyperparameter Spaces (excluding MLP Topology)



4.2 Feature Reduction
For each model, we conducted either a grid or random
search on a specified hyperparameter space with nested cross-
validation using a PCA-reduced feature set (”PCA” being
Principal Component Analysis). The hyperparameter spaces
for each of our nine models are the same as those from the
full feature set experiment (see Table 4). The tested topolo-
gies for the multi-layer perceptron varied depending on the
number of principal components. Each experiment was con-
ducted fifteen times, once for each combination of the three
normalization techniques (no normalization, min-max, max-
absolute) and five different principal component sizes (n =
1, 2, 5, 10, 15).

As one might expect, all of the models performed best with
n = 15 principal components for the PCA-reduced feature
set. Interestingly enough, all of the models also performed
best with max-absolute normalization.

Although many of the PCA-reduced models did not per-
form as well as their full feature set counterparts, the PCA-
reduced multi-layer perceptron model, the decision tree
model, and the random forest model all were remarkably
close and the PCA-reduced linear Gaussian Naive Bayes es-
timator actually performed better (59.77% versus 56.93%).

4.3 Feature Selection: Wrappers
For each model, a forward-selection wrapper was run on each
fold of 10-Fold Cross Validation, giving us 10 different sets of
15 selected features for that model. The 15 features with the
highest mode (in being selected across all 10-folds) were then
selected. 10-Fold Cross Validation was run once more with
these selected 15 features in order to obtain a final accuracy
measurement. For each model, the normalization technique
and hyperparameters used were those with which the model
performed the best on the full feature set.

Similar to the PCA-reduction experiments, although many
of the wrapper-selected models did not perform as well as
their full feature set counterparts, the multi-layer perceptron
model and the gradient boost model all were remarkably
close. In addition, the Decision Tree, Gradient Boost, and
Gaussian Naive Bayes estimator all performed better with
their respective wrapper-selected feature sets than they did
with the full feature set.

4.4 Fine-tuning
Once the three previous sets of experiments were completed,
three models stood out above the rest in terms of perfor-
mance:

1. the Gradient Boost model, optimized on the full dataset
without normalization;

2. the Random Forest model, optimized with the forward-
selection wrapper and min-max normalization; and

3. the Multi-Layer Perceptron, optimized on the full
dataset with min-max normalization.

We took these three models and attempted to fine-tune
them to increase their mean accuracy by whatever amount
we could. For the Gradient Boost Model, we played with the
maximum depth of the tree. For the Random Forest model,

we did this by increasing and decreasing the number of es-
timators in the ensemble and the number of features consid-
ered at each node split until maximum accuracy was achieved.
For the Multi-layer Perceptron, we experimented with vari-
ous topologies (including three hidden layers, which we had
excluded from the previous hyperparameter searches).

We also experimented slightly with the single Perceptron
model by training it without early stopping.

For all four of these fine-tuning experiments, we were able
to increase the classification accuracy (although only by a few
percentage points or, in some cases, even less than a percent-
age point).

5 Final Results
The best performances of each model for each of the five sets
of experiments are presented in Figure 1.

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0%

20%

40%

60%

80%

100%

Baseline 
Accuracy

SGD Logistic 
Regression

Perceptron MLP Decision 
Tree

Random 
Forest

Gradient 
Boost

Linear SVM Gaussian 
NB

Initial Full Data Feat. Reduct. Wrapper Final

Figure 1: Best model performances across all five sets of ex-
periments

The two models that showed the most improvement
from their initial experiment to their final experiment were
Stochastic Gradient Descent and the Multi-layer Perceptron.
The three best models overall were (in order from highest
accuracy to lowest) the Gradient Boost ensemble, the Ran-
dom Forest ensemble, and the Multi-layer Perceptron; each
of these models scored above 85% accuracy. We will expand
on each of their final models below:

5.1 Multi-layer Perceptron
The Multi-layer Perceptron achieved a mean accuracy (across
10-fold cross-validation) of 85.17%. This was accomplished
by training a multi-layer perceptron with 2 hidden layers
(584 nodes each) with a learning rate of c = 0.005, an l2-
regularization parameter of λ = 0.005, and a momentum of
α = 0.3 on the full feature set with min-max normalization.

To help us understand the successes and failures of this
model, we averaged out the confusion matrices across 10-fold
cross validation of a similar high-performing multi-layer per-
ceptron; this mean confusion matrix is displayed in Figure 2.

As we can see from the confusion matrix, the multi-layer
perceptron had the highest accuracy rate for the ‘Classical‘
genre and the lowest accuracy rate for the ‘Rock‘ genre. The
multi-layer perceptron often confused ‘Classical‘ and ‘Jazz‘;
‘Rock‘ and ‘Country‘; ‘Blues‘ and ‘Country‘; ‘Rock‘ and
‘Disco‘; and ‘Hiphop‘ and ‘Disco‘.



Figure 2: A confusion matrix (averaged over 10-fold cross-
validation) for a high-performing MLP model

5.2 Random Forest

The Random Forest achieved a mean accuracy (across 10-fold
cross-validation) of 85.70%. This was accomplished by train-
ing the random forest on its min-max normalized wrapper-
selected feature set with n = 150 estimators, no maximum
tree depth, a maximum of f = 6 features to be considered
at each node split, and with the Gini Impurity measure for
determining when to split.

The mean confusion matrix for the random forest model is
displayed in Figure 3.

As was with the MLP, the random forest had the highest
accuracy rate for the ‘Classical‘ genre and the lowest accu-
racy rate for the ‘Rock‘ genre. In addition, the random forest
often confused ‘Classical‘ and ‘Jazz‘; ‘Rock‘ for ‘Country‘,
‘Metal‘, and ‘Disco‘; ‘Country‘ for ‘Blues‘ and ‘Jazz‘; and
‘Disco‘ and ‘Hiphop‘.

5.3 Gradient Boost

The Gradient Boost model achieved a mean accuracy (across
10-fold cross-validation) of 86.20%. This was accomplished
by training the gradient boost ensemble on the unnormalized
full feature set with n = 100 estimators, a learning rate of
c = 0.1, a maximum tree depth of m = 7, and a maximum of
f = 8 features to be considered at each node split.

The mean confusion matrix for the gradient boost model is
displayed in Figure 4.

As was with the MLP and the random forest, the gradient
boost model had the highest accuracy rate for the ‘Classical‘
genre and the lowest accuracy rate for the ‘Rock‘ genre. In
addition, the gradient boost often confused ‘Classical‘ and
‘Jazz‘; ‘Rock‘ and ‘Disco‘; ‘Rock‘ and ‘Metal‘; ‘Rock‘ for
‘Blues‘ and ‘Country‘; and ‘Reggae‘ and ‘Disco‘.

Figure 3: A confusion matrix (averaged over 10-fold cross-
validation) for a high-performing Random Forest model

6 Conclusions
Across the five sets of experiments that we ran with the nine
different models on our expanded GTZAN dataset, we were
able to achieve astonishingly high accuracies with three of
the models: the Multi-layer Perceptron model (85.17%), the
Random Forest ensemble (85.70%), and the Gradient Boost
Decision Tree ensemble (86.20%). The other six models also
did remarkably well, all scoring above 60% accuracy by the
final experiment.

Also notable is the fact that several of the models were
able to achieve near-maximum accuracy with a PCA-reduced
feature set or with their respective wrapper-selected feature
sets. Thus, if one wanted to opt for a simpler model, there
exist models that could perform at a high level with only 15
features (instead of the full 73).

As we look at the confusion matrices of the top three mod-
els, we see several commonalities between them. All three
of the models had the highest accuracy score for the ‘Classi-
cal‘ genre. When one considers the style of classical music in
comparison with the other nine genres, this is not too surpris-
ing: the other nine genres are all much newer in origin than
and collectively much different in style from classical music.

All three of the models also had the lowest accuracy score
for the ‘Rock‘ genre; in fact, all three models scored so low
on the ‘Rock‘ genre that if it had not been included in the
dataset, it is entirely possible that mean classification accura-
cies above 90% could have been achieved by all three models.
This is not entirely surprising either; the genre of rock music
is often considered a conglomerate of multiple genres and–in
its early years–was heavily influenced by blues and country
[Rock and of Fame, 2021]. Interestingly enough, all the three
models confused ‘Rock‘ with at least one of these two genres,
if not both.

When we consider the other genres that the top three mod-



Figure 4: A confusion matrix (averaged over 10-fold cross-
validation) for a high-performing Gradient Boost model

els often confused, we also should not be surprised. ‘Classi-
cal‘ and ‘Jazz‘ were confused by all three models; these two
genres share many similar instruments (e.g., more traditional
instruments such as the piano, the clarinet, etc.) and also are
the only two genres that may not have a vocal performance in
a song. As noted previously, ‘Rock‘, ‘Country‘, and ‘Blues‘
were often confused by the three models; these three genres
share similar roots or, in the case of ‘Rock‘, originated from
the other two. Note also that ‘Rock‘ and ‘Metal‘ were con-
fused by the Gradient Boost model; the metal genre is some-
times seen as a subset of the rock genre. Many of these genres
may possibly be confused by humans as well.

In summary, we know that high accuracy can be achieved
and that the mistakes made by the top-performing models are
similar (although perhaps slightly more numerous) to the mis-
takes that might be made by human listeners.

6.1 Future Work
Expanded Dataset
One of the largest drawbacks of our experiments was the lim-
ited amount of data with which we could train the models.
Even after augmenting the GTZAN dataset by splitting each
30-second clip into three 10-second clips, we still only had
3000 samples.

In addition, it is entirely possible that we introduced sig-
nificant bias into the models by splitting the clips in this way.
Although none of the instances were identical, each instance
in our augmented set had two other instances that could have
been very similar to it; this could have resulted in our models
simply memorizing these similarities instead of memorizing
similarities within the genres themselves.

The Google AudioSet has 60,960 10-second audio sam-
ples for each of the ten genres we experimented with for this
project; adding these 10-second audio samples to our aug-

mented dataset could allow our models to generalize better to
new data.

Eliminate Unnecessary Features
Although we did feature selection experiments for each indi-
vidual model, we did not conduct any experiments to elim-
inate unnecessary features from the dataset as a whole. It is
possible that there are features that were not significantly used
by any of the models with which we experimented. By iden-
tifying and removing such features, additional noise could be
removed from the data and the model performances might in-
crease.

Improving ‘Rock‘ Genre Classification
As noted previously, the top three models had the most diffi-
culty in correctly identifying music samples from the ‘Rock‘
genre. We have supposed that this is likely due to the simi-
larity of ‘Rock‘ to some of the other genres, namely ‘Blues‘,
‘Country‘, ‘Metal‘, and ‘Disco‘.

We believe that it would be worthwhile to, first, research
which audio features are particular pertinent to identifying
the ‘Rock‘ genre. It is likely that other researchers have writ-
ten papers on this particular question. We could then include
these features (if they were not already included in our feature
set) and perhaps weight them more heavily when attempting
to classify the ‘Rock‘ genre.

We also believe it would be worthwhile to train a number
of models to specialize in identifying ‘Rock‘ music. These
specialized models could then be combined in an ensemble
with our top-performing models from this current project.

Nonhomogeneous Ensemble Approaches
Although we utilized two ensemble approaches in our
project–Random Forest and Gradient Boost–both of these ap-
proaches were homogeneous in the type of model of which
the ensembles were composed; that is, both ensemble ap-
proaches were only composed of decision tree models. It
might be worth exploring the combination of different types
of models; for example, if we combined our top three-
performing models–the Multi-layer Perceptron, the Random
Forest, and the Gradient Boost ensemble–we might be able to
achieve an even higher accuracy than our current maximum
86.20%.

References
[Brownlee, 2021] Jason Brownlee. Nested cross-validation

for machine learning with python. Machine Learning Mas-
tery, Jan 2021.

[MARSYAS, 2015] MARSYAS. Data sets, 2015.
[Peeters, 2004] Geoffroy Peeters. A large set of audio fea-

tures for sound description (similarity and classification)
in the cuidado project. 2004.

[Rock and of Fame, 2021] Rock and Roll Hall of Fame.
Roots of rock, 2021.

[Tzanetakis and Cook, 2002] G. Tzanetakis and P. Cook.
Musical genre classification of audio signals. IEEE Trans-
actions on Speech and Audio Processing, 10(5):293–302,
2002.


