
Recurrent Neural Networks for Identifying Phases
of the Honeybee Waggle Dance

Griffin Holt, C S 474 Deep Learning

I. THE PROBLEM

In the 1920s, Karl von Frisch conducted a series of ex-
periments regarding the behavior of honeybees [1]. One of
Frisch’s most significant discoveries was that of the meaning
and interpretation of the honeybee “waggle dance”: forager
honeybees use geometry through a cyclic dance to communi-
cate information about located food sources [2]–[4]. In this
report, I describe my attempts to utilize Recurrent Neural
Networks (RNNs) and their variants to identify two different
portions of this waggle dance: the run and the return phase.

A. Explanation of the Waggle Dance
Upon discovering a food source that is further than 100

meters from its resident hive, a forager honeybee will begin
a cyclic dance–termed the “waggle” dance by entomolo-
gists–that follows the following form [2]–[4]: (see Fig. 1)

1) The forager bee walks in one direction along a linear
path, “waggling” its abdomen from side to side as it
progresses along this path. (This portion of the dance is
referred to in the literature as the run or waggle run.)

2) The forager then turns either to the left or to the right,
circling around to return to the start of the waggle run.
(This portion of the dance is referred to as the return
phase.)

3) The forager repeats the waggle run with the next return
phase being to the opposite side.

Fig. 1: The path of the honeybee waggle dance, including both
the “waggle run” and two return phases.

B. Problem Description
In my personal research out of Information and Decision Al-

gorithm Laboratories, I have been working for almost a year to

construct a real-time translator of the honeybee waggle dance.
A key requirement of this project will be the development of
an algorithm that can properly classify a location point, in
(x, y)-coordinates, of a dancing honeybee as being either on
the waggle run or the return phase. There are currently no
other algorithms or approaches to this problem in the existing
literature.

This problem is a classification problem and my approach
is supervised.

II. DATASET

My research group in IDeA Labs hand-annotated 28 videos
of waggle dances pulled from YouTube. Each frame of each
video was marked with the (x, y)-coordinate of the thorax of
the honeybee performing the dance and with a label: 0 for
the point being on the return phase, and 1 for the point being
on the waggle run. Across all 28 videos, there are thus 9330
data points, complete with an x-coordinate, y-coordinate, and
correct label (0 or 1).

A. Data Exploration

As can be observed in Fig. 2, the waggle run is much more
active than the return phases. Along the run, the thorax of the
bee oscillates very quickly as the bee walks; along the return
phases, the thorax does not oscillate and follows the smooth
arc of the bee’s path. Also, the waggle run is closer to the
centroid of all the data points, whereas points on the return
phases will be farther away.

50 75 100 125 150 175 200
x

180

160

140

120

100

80

60

40

20

y

Path of Honeybee
Waggle Run
Return Phase

Fig. 2: A sample annotated honeybee waggle dance

B. Data Augmentation & Preparation

An input un to the RNN model at time step t = n is defined
by



un =
[
xn yn θn dn

]T
, (1)

where xn is the horizontal coordinate of the bee at time t = n;
yn is the vertical coordinate of the bee at time t = n; θn
is the angle at time t = n between the previous location
(xn−1, yn−1) and the next location (xn+1, yn+1) with the
current location (xn, yn) at the center; and dn is the Euclidean
distance between the location (xn, yn) at time t = n and the
current centroid of the data

(
1
n

∑n
i=1 xi,

1
n

∑n
i=1 yi

)
.

I added the latter two data points to augment the dataset,
since they can assist the RNN in describing the oscillation
along the waggle run and the distance of the return phase
points from the center of the location data.

In addition, I split each of dances into sequences of com-
plete cycles, thereby spreading out the data points across more
sequences to be fed to the RNN models.

III. METHODOLOGY

I experimented with three different types of models: stan-
dard Recurrent Neural Networks (RNNs), Long Short-Term
Memory Networks (LSTMs), and Gated Recurrent Units
(GRUs).

Each model consists of a recurrent model with l recurrent
layers and a single fully-connected linear layer mapping the
final recurrent layer to 2 outputs. Each model was also kept
to less than 200 parameters.

I designed the following progression of trials in order to
find the recurrent network that best fits the data:

1) Perform a Grid Search on the RNN model, the LSTM
model, and the GRU model. The Grid Search is per-
formed across 3 or 4 different network topologies (de-
fined by the number of layers and the size of the
hidden layer); two different sequence overlap lengths
(w = 10, 20); and three different learning rates (µ =
0.0005, 0.001, 0.005).

2) Perform the same Grid Search, now with the order of
the input sequences shuffled each epoch.

3) Perform the same Grid Search, now with loss normal-
ization implemented. This is repeated once more with
shuffled sequences.

4) Perform the same Grid Search, now with both loss
normalization and gradient clipping implemented. Dif-
ferent maximum gradient norms were added to the
Grid Search. This is repeated once more with shuffled
sequences.

Models were trained on all of the dances except one,
“Waggle Dance 18“, which was used as the test set–using the
Adam optimizer and Cross-Entropy Loss for either 300, 400,
500, or 600 epochs, depending on the type of model (LSTMs
and GRUs tended to require more epochs for training).

Each Grid Search would return the best fit model for
each set of hyperparameters. These best fit models were then
evaluated on the test set according to three measures: Cross-
Entropy Loss, Classification Accuracy, and Levenshtein Edit
Distance. For the accuracy and edit distance measures, the
argmax of the output probabilities was used as the output.

IV. ANALYSIS OF THE RESULTS

42 of the 130 best models reported from the Grid Searches
reported a test classification accuracy above 75%. 11 of the
best models reported a test classification accuracy above 80%
(displayed in Table II.) The baselines for comparison are
threefold: first, the baseline formed from guessing only 0’s;
second, the baseline formed from guessing only 1’s; and third,
the baseline formed from sampling 0 or 1 from a uniform
distribution. The All-Zeroes Baseline has the highest scores
for this test set–since there are more points on the return phase
than the waggle run in our test dance, Waggle Dance 18.

The best model–the Recurrent Neural Network with 2 recur-
rent layers and a hidden size of 6, trained over 500 shuffled
epochs with loss normalization and the gradient clipped to
a value of 30–achieved 82.7% classification accuracy and
a Levenshtein edit distance of 67. (Note, however, that the
second-best model–the LSTM with 2 layers and hidden size 3,
trained over 500 shuffled epochs with normalized loss and no
gradient clipping–had the lowest Cross-Entropy Loss, 0.448).
Thus, the model improved significantly over the All-Zeros
Baseline. The best model also had a True Return Phase Rate of
84.1% and a True Waggle Run Rate of 80.3%, suggesting that
it performed slightly better at classifying return phase points
than waggle run points.

Predicted: 0 Predicted: 1
Actual: 0 253 48 301
Actual: 1 34 139 173

287 187 474

TABLE I: Confusion Matrix for the Best Model

I am certain that no over-fitting occured: the test dance was
from a completely different YouTube video and a completely
different beehive than the other videos; thus, the test dance
truly represents novel data never seen before by the algorithm.

It is also important to note that the best model was not one
of my first models: in fact, it was one of the last models trained
(on the final iteration of improving models using Gradient
Clipping).

V. FUTURE WORK

The final classification accuracy of the best model, 82.7%,
will serve as an excellent baseline moving forward for my
research group. Our next steps will be to attempt to beat this
RNN accuracy by utilizing unsupervised learning techniques,
such as the Fourier Transform, to distinguish between the
points on the waggle run and return phases.

REFERENCES

[1] T. Munz, The Dancing Bees: Karl von Frisch and the Discovery of the
Honeybee Language. The University of Chicago Press, 2016.

[2] K. R. von Frisch, The Dancing Bees: An Account of the Life and Senses
of the Honey Bee. Methuen and Co Ltd, 1966.

[3] ——, The Dance Language and Orientation of Bees. Belknap Press of
Harvard University Press, 1967.

[4] ——, Bees: Their Vision, Chemical Senses, and Language, revised ed.
Cornell University Press, 1971.



Model Hidden # Recurrent Total # Training Nmlzd. Grad. Shuffled Test Test Test Levenshtein
Size Layers Parameters Epochs Loss Clip CE Loss Accuracy Edit Dist.

All-Zeros Baseline - - - - - - - 0.678 63.5 173
All-Ones Baseline - - - - - - - 0.9483 36.5 301
Random Baseline - - - - - - - 0.6931 50.0 189 - 239

RNN 6 2 170 500 Yes 30 Yes 0.463 82.7 67
LSTM 2 3 166 500 Yes None Yes 0.448 82.3 74
GRU 2 5 198 600 Yes 2 Yes 0.481 81.6 72

LSTM 3 2 166 500 Yes None Yes 0.504 81.6 76
RNN 5 2 127 500 Yes 10 No 0.450 81.2 75
GRU 3 2 161 600 Yes 1 Yes 0.461 81.0 75
GRU 2 3 126 600 Yes None No 0.470 80.8 75
RNN 6 2 170 300 No None No 0.467 80.4 80
RNN 5 2 127 500 No None Yes 0.458 80.4 76
GRU 2 3 126 600 Yes 1 Yes 0.498 80.4 78
RNN 5 3 187 500 Yes 30 No 0.467 80.4 79

TABLE II: Models with > 80% Test Accuracy



Date Time Spent Category Details

Tue, 11/2/21 6:05 Prep Work

- Prepared my research journal
- Prepared the Jupyter notebook for my initial RNN experiments
- Started writing the pipeline to get the data from .CSV format to be ready for PyTorch
(split into training and test)
- Computed a few additional input data points for the RNN
- Fixed some mistakes (outliers) in the data & fixed the data prep algorithm as well
- Wrote up my Final Dataset Project report (due Nov. 20)

Tue, 11/9/21 2:22 Research

- Read through Ch. 10 of the Deep Learning textbook to become more familiar with RNNs
(specifically about how to combat vanishing/exploding gradient issues)
- Read through Ch. 15 of Hands-On Machine Learning to learn more about RNNs, LTSMs,
& GRUs (esp. how to use them in practice)
- Reread The Unreasonable Effectiveness of Recurrent Neural Networks
- Reread Understanding LSTMs
- Researched how to do Peephole Connections for LSTMs in PyTorch
- Researched how to do Gradient Clipping in PyTorch
- Researched 1D Convolutional Networks for Time Series
- Explored Levenshtein Distance as a possible accuracy measurement for final models
- Based on my notes from my research, I began to plan out and design my experiment in
using RNNs

Mon, 11/15/21 2:50 Prep Work

- Reworked my data pipeline (included only 0s and 1s)
- Removed all the ”travels” from the data
- Split up dances into cycled sequences so as to spread out the data
- THE DATA IS NOW READY

Mon, 11/15/21 4:30 Model Work
- Started experimenting with the Standard RNN
- Ran different combinations of Learning Rates, Hidden State sizes, and Numbers of Layers
- Achieved some initially promising results. I think the LTSM and GRU will definitely be better.

Tue, 11/16/21 0:20 Research - Met with Eric (the TA) to discuss different baselines to use for comparison for the RNN models

Tue, 11/16/21 3:30 Model Work

- Planned out & wrote the code for the Grid Search for the Standard RNN
- Fixed a few things in the data pipeline
- Ran the Grid Search for the Standard RNN
- Received 4 top Standard RNN results. Recorded their hyperparameters to refine all 4 models
& choose the best one

Wed, 11/17/21 2:20 Model Work
- Ran the fine tuning on the top 4 Standard RNNs
- Started the Grid Search for the Standard LSTM
- Fine-tuned 2 of the LSTM models

Thu, 11/18/21 2:00 Model Work

- Fine-tuned another of the LSTM models.
- Met with Eric (TA) & discussed including another data point in my input (the classification
of the previous point)
- We arrived at the conclusion that without that data point, my RNNs are not taking advantage
of recurrence and memory (and are little more than a fancy linear network).
- Trained the new RNNs using the additional column
- Wrote the training code & discovered that my old RNNs are still doing really well
(despite my previous thoughts on the subject)

Thu, 11/18/21 0:10 Prep Work - Added the additional column of the previous movement classification to the input data

Fri, 11/19/21 5:00 Model Work

- Ran tests with the additional column of the previous movement classification to the input data
(The results of these tests suggest that this new data point is too highly correlated with the output,
and for such a small dataset, leads simply to the memorization of the dataset without gaining
any insight into the structure of the sequences)
- Reverted data back to original 4 inputs
- Fixed a bug in my training function (the test data was chosen incorrectly)
- Wrote the testing function and separated the test data
- Started my official experiments: Standard RNN w/ Grid Search for various topologies;
similarly, Standard LSTM

Sat, 11/20/21 5:00 Model Work
- Continued my experiments from the previous day: this time, with Grid search across LSTM models
and GRU models
- The LSTM models and GRU models have not been as effective, generally, as the RNNs at this task

Mon, 11/22/21 1:10 Model Work

- Worked more on training the RNNs, specifically with loss normalization & shuffling
(able to achieve 81% accuracy so far)
- Planned out next steps to refine the models further
- Started writing the code for Gradient Clipping

Tue, 11/23/21 1:00 Model Work - Ran the code for Gradient Clipping on the RNN models (took 10 hours to run)
Wed, 11/24/21 1:00 Model Work - Ran the code for Gradient Clipping on the LSTM models (took 24 hours to run)
Thu, 11/25/21 1:00 Model Work - Ran the code for Gradient Clipping on the GRU models (took 24 hours to run)

Mon, 12/6/21 4:00 Model Work - Wrote and tested an ensemble approach: didn’t do any better than the individual models
(wasn’t worth adding it to the report)

Mon, 12/6/21 4:00 Model Work - Compiled the finals results & wrote the final report
Research Prep Work Model Work Total Hours
2:42 9:05 34:30 46:17

TABLE III: Project Log


