
Predicting Justin Verlander’s Next Pitch with Machine Learning

Project Category: Athletics & Sensing Devices

Name: Mohamed Owda Name: Griffin Holt
SUNet ID: mohamed8 SUNet ID: gholt

Department of Computer Science Department of Electrical Engineering
Stanford University Stanford University

mohamed8@stanford.edu gholt@stanford.edu

I. INTRODUCTION

Baseball revolves around a pitcher throwing a baseball, an
act referred to as “the pitch,” and a batter attempting to hit the
baseball to then run around the bases and, hopefully, score.
To make it more difficult for the batter to hit the baseball,
the pitcher will throw different types of pitches, which
vary in speed, rotation, vertical movement, and horizontal
movement. Being able to guess the upcoming pitch allows
batters to know what to expect and adjust accordingly [1].
On the other hand, the less predictable a pitcher is, the higher
the chance the pitcher has of catching the batter off guard
and “striking” him out.

For our research in particular, we chose to predict the
pitches of a single pitcher, Justin Verlander. Verlander has
played in Major League Baseball since 2005–which provides
us with a fairly large number of data points. He also has a
fairly standard repertoire of pitches – consisting of a four-
seam fastball (“FF”), a curveball (“CU”), a changeup (“CH”),
a slider (“SL”), and a sinker (“SI”) – making him a more
ideal candidate for a single-pitcher prediction model. This set
of 5 pitches will be referred to as valid pitch types (VPT).
Given a set of input features (including game situational data,
the pitcher’s pitching statistics, the batter’s hitting statistics,
and the results of previous pitches), we will attempt to
classify the next pitch Verlander will throw from the set of
VPT.

A. Related Work

Ganeshapillai and Guttag [2] first approached the problem
of predicting pitches with machine learning, using binary
classification for predicting whether a pitch was a fastball
or non-fastball. Other groups since then have addressed
variations of the same problem. Hoang et al. [3] utilized
Support Vector Machines (SVM) and k-Nearest-Neighbor
algorithms to approach pitch classification as a multi-class
classification problem: they aimed to be more specific in
their predictions than simply “fastball” or “non-fastball,” and
were able to achieve classification accuracy as high as 80%.
Sidle and Tran [4] utilized Linear Discriminant Analysis,
SVM, and Random Forests to approach the multi-class pitch
prediction problem, acheiving classification accuracy results
of 66.6%.

As [3], [4] before us, we approached pitch classification
as a multi-class classification problem. We utilized some of
the same input features, mainly the game situational features
and the previous pitch tendency features used by both [3],
[4]. However, we used several new input features based
on batting statistics that were not used by these groups,
including the batter’s strike heatmap and pitch-specific slug-
ging averages; these features are further described in Sec-
tion II. In addition, [2], [3], [4] all had datasets composed
of pitches from at least 200 different pitchers–resulting in
training set sizes of 100,000 pitches or more. Thus, previous
researchers have primarily created general baseball pitch
prediction models, applicable to many different pitchers. One
of our goals was to see whether or not we could create a
pitcher-specific model–trained only on the examples from
a single pitcher–which introduced the additional challenge
of achieving high accuracy with a limited training set size.
Finally, because these papers all saw some success with
SVMs, we utilized these models–in addition to Feedforward
Neural Networks and Multinomial Logistic Regression–to
address our multi-class classification problem.

Lee [5] utilized ensemble models, a method of combining
predictions from multiple neural networks, to reach 64.2%
accuracy with predicting not only the pitch type but also the
pitch location over the base. Furthermore, Yu, Cheng, and
Chang [6] used long-short-term memory (LSTM) models, a
form of recurrent neural networks, to predict pitch types with
an accuracy of 76.7%. While we did not have enough time to
try out ensemble or LSTM models, they are certainly areas
to explore for future work.

II. DATASET AND FEATURES

The data was drawn exclusively from Statcast [7], an
automated tool from the MLB to track pitching data by
recording information about each pitch thrown. Using the
PyBaseball package [8], we gather all pitching data, which
starts from the 2008 scene. This final dataset was composed
solely of pitches thrown by Justin Verlander, starting from
the 2009 season. We have three different groups of features.
First, we have “game-situational features” (found in Table I):
features that only give information about the game envi-
ronment that the pitch is being thrown in. Next, we have
“pitching features” (found in in Table II): features that are

Feature Description
1 Year The year the pitch was thrown. Zero-indexed on 2010. An integer between 0 and 9, inclusive.
2 Month The month the pitch was thrown. An integer between 3 and 12, inclusive.
3 Score Difference The score of the pitching team minus the score of batting team. An integer.
4 Inning The inning the pitch was thrown. A natural number.
5 Inning Half 0 if pitch is thrown at top of the inning. 1 if pitch is thrown bottom of the inning.
6 Outs The number of outs in the half of the inning, before the pitch was thrown. An integer between 0 and 2.
7 Balls The number of balls in the count before the pitch is thrown. An integer between 0 and 3.
8 Strikes The number of strikes in the count before the pitch is thrown. An integer between 0 and 2.
9 Pitch Number The pitch number of the plate appearance before the pitch is thrown. A non-negative integer.
10 On 1B Boolean (0 or 1) on if there’s a player on first base.
11 On 2B Boolean (0 or 1) on if there’s a player on second base.
12 On 3B Boolean (0 or 1) on if there’s a player on third base.

13 - 14 OF Alignment One-hot vector on if the outfield is in a standard or strategic outfielder fielding alignment.
15 - 17 IF Alignment One-hot vector on if the infield is in a standard, strategic, infield shift fielding alignment.

TABLE I
GAME SITUATIONAL INPUT FEATURES FOR THE BASELINE MODELS

Feature Description
18-22 Prev. Pitch Type A one-hot vector on whether the previous pitch thrown was a FF, CH, CU, SL, SI.

23 - 27 Prev. 5 Pitch Tendencies For each of {FF, CH, CU, SL, SI}: The fraction of the previous 5 pitches that are of that type. ∈ [0, 1].
28-32 Prev. 10 Pitch Tendencies Replicate features 23-27 except this is over the previous 10 pitches (Note that features 30-34 should sum to 1).
33-37 Prev. 20 Pitch Tendencies Replicate features 23-27 except this is over the previous 20 pitches (Note that features 35-39 should sum to 1).
38-40 Previous Pitch Result A one-hot vector on whether the previous pitch thrown resulted in a strike, ball, or in-play.
41-45 Total Strike Tendency For each of {FF, CH, CU, SL, SI}: The fraction of all pitches of that type that resulted in a strike. ∈ [0, 1].
46-50 Total Pitch Tendency For each of {FF, CH, CU, SL, SI}: The fraction of total pitches that are of that type. ∈ [0, 1].
51-55 Prev. 5 Pitch Strike Tendencies The fraction of the previous 5 CH pitches that are strikes. ∈ [0, 1].
56-60 Prev. 10 Pitch Strike Tendencies Replicate features 53-57 except this is over the previous 10 pitches.
61-65 Prev. 20 Pitch Strike Tendencies Replicate features 53-57 except this is over the previous 20 pitches.

TABLE II
PITCHING FEATURES

Feature Description
66 Handedness 0 if batter is left-handed, 1 if batter is right-handed.

67-75 Result of Last At-Bat One-hot vector of the last at-bat being an out, double, triple, single, strikeout, walk, home run, error or other
76-80 Pitch Strikeout Tendency The fraction of strikes off each pitch type from {FF, CH, CU, SL, SI} in this batter’s career. ∈ [0, 1].

81 Overall Strikeout Tendency The fraction of strikes from all pitches in this batter’s career. ∈ [0, 1].
82-86 Pitch-Specific Slugging Average For each of {FF, CH, CU, SL, SI}: The slugging average from pitches of that pitch type.

87 Overall Slugging Average The slugging average from all pitches.
88-100 Batting Heat Map The fraction of pitches that resulted in strikes in 13 different zones. Each feature is ∈ [0, 1].

TABLE III
BATTING FEATURES

related to different pitching results and pitching tendencies
of Justin Verlander based on previous pitches he’s thrown.
Finally, we have “batter features” (found in Table III): these
are various features related to the batter’s historical success
and tendencies both against a given pitch and against all
pitches across all previous at-bats. Both batter features and
pitching features are only generated based upon previous
pitches, as this is the information the pitcher and batter have
at the time. Note that primarily only the game-situational
features were provided directly by Statcast: the remaining
features required independent extensive preprocessing and
data engineering, which we accomplished ourselves.

The classification label for each example is the pitch’s type
(previously listed). We removed pitches that had faulty data
(such as unusual at-bat counts), and only kept pitches that
were VPT. In total, we had n = 35153 examples. We shuffled
the data and created a train-test split of 80-20, stratifying the
data so that the labels would be represented proportionally

across the training and test set. “FF” was the most prevalent
of the pitch classes, accounting for 58.3% of all pitches;
“CU” was the second most prevalent, accounting for 16.7%
of all pitches, meaning our data is imbalanced.

We wanted to test which features were best for helping our
models predict the next pitch. Thus, we created 3 different
feature sets against which to train our models: the “Whole”
feature set consists of Features 1 - 100 from Tables I, II, and
III, the Situational (Sit.) feature set that consists of features
only from I, and the “Without Recursive” (WOR) feature set
that consists of features 1-17, 41-50, and 66-100 from Tables
I, II, and III.

We observe that some features have different scales com-
pared to others (probabilities vs natural numbers) that may
result in our model placing higher emphasis on features
containing larger values. To counteract this, for each dataset
we create a standardized version of the dataset where each
feature is forced between 0 and 1, using Scikit-Learn’s

MaxMinScaler [9].
Many of the input features are also one-hot vectors due

to the discrete nature of the game of baseball. To cut down
on this added dimensionality, for each dataset we create a
reduced version using Principal Component Analysis. We
retained the top 95% of the principal components of each
feature set, so as to retain as much of the information as
possible while still projecting down into a less-sparse feature
space. The Whole feature set was reduced from 100 input
features to 35; the WOR feature set was reduced from 53 to
19 input features; and the Sit feature set was reduced from
17 to 12 input features.

To create the heatmap for Features 88-100, we divide the
pitching zone into 13 sections [10], the central 9 of which
compose the strikezone. For each of these sections for a
particular batter, we compute the number of strikes thrown
to that zone divided by the number of pitches thrown to that
zone.

III. METHODS

A. Multi-Layer Perceptron

Our first model type was a Multi-layer Perceptron classi-
fier (MLP) neural network, constructed through Scikit-Learn
[9] and Keras [11]. Throughout all of our MLP models, we
utilized ReLU(x) = max(0, x) as the activation function
between layers. The final layer was pushed through the
softmax equation, Softmax(xi) = exp(xi)∑

j exp(xj)
to get the

output z = Softmax(ar−1) with z ∈ R5 representing the
probability of each class, and ar−1 being the final layer. Our
objective was to minimize Cross-Entropy Loss

CE(y, ŷ) = −
K∑

k=1

yk log ŷk,

where ŷ ∈ RK is the vector of softmax outputs from the
model for the training example x, and y ∈ RK is the
ground-truth vector for the training example x such that
y = [0, ..., 0, 1, 0, ..., 0]⊤ contains a single 1 at the position
of the correct class (also called a “one-hot” representation)
(from CS229 PSET2 Fall 2022 Q4).

We utilized the Adam Optimization Algorithm [12] to
minimize this objective.

1) Experiments: k-Fold Cross Validation is a process by
which we split the data into k ”folds,” using k − 1 of these
folds for training and 1 fold for testing. We cycle through
each fold being the test set, and generate an accuracy of our
model based on the average of the results, thus ensuring our
data is both training and validating on each example. We
experimented with the neural networks in multiple differ-
ent ways, conducting hyperparameter searches using 5-fold
Cross-Validation, to determine six different hyperparameters:

1) Number and Size of Hidden Layers;
2) Batch Size;
3) Learning Rate;
4) Regularization Parameter;
5) Presence of Dropout Layers;
6) Class Weights.

We experimented with batch sizes of 10, 100, 200, which
represents the number of examples passed to the neural
network at one time to update the weights. We varied the
batch sizes as larger batch sizes are faster to train but tend
to be less accurate [13].

As our number of examples were limited, we were con-
cerned about overfitting. Thus, to counteract overfitting, for
some models we introduced dropout layers [14] with a
dropout rate of 0.1, meaning for each node in each layer
there is 0.1 probability this node gets ignored by the follow-
ing layer. To also counteract overfitting, we also consider
regularization parameters of size 10−4, 10−3, 100 and 101.
The regularization parameter acts as a coefficient on the l2-
norm penalty. The larger the regularization parameter, the
greater the loss our model experiences for having the weights
θ become too large, meaning θ is pushed to be smaller,
making it more difficult for the model to overfit.

To prevent the model from predicting the most common
pitch type, we also tested models with class weights. For
each class k, we compute a class weight of

n′

K · c
where n′ is the number of examples, K is the number of
classes, and c is the number of examples of class k. Thus,
classes that occur less will have a higher weight, and will
be penalized greater for mistakes in our loss function. We
vary the learning rate used by the gradient descent algorithm
between 10−4, 10−3, and 10−2, with larger learning rates
converging faster but being prone to overfitting and sub-
optimal results.

B. Multinomial Logistic Regression

The next model we tested was a Multinomial Logistic Re-
gression classifier. Multinomial Logistic Regression attempts
to maximize a weight vector θ for each class according to
the cross-entropy loss function

J(θ) =

n∑
i=1

K∑
k=1

1{yi = k} log(P (yi = k|xi, θ)

where K = 5 (our number of classes), n is our number
of examples, and the P (yi = k|xi, θ) = Softmax(θTk x

i).
We then predict whichever class has the greatest likelihood
when we multiply the example by θ. The Logistic Regression
fitting algorithm used an l2-norm penalty applied to θ to
ensure the weights do not get too large which would result
in overfitting or never converging.

We also experimented with class weighting due to the
imbalance of classes in our data.

C. Linear Support Vector Machines

The final model we tested was Support Vector Machines
(SVM) [15]. SVM attempts to find the hyperplanes that best
separate the data by finding the hyperplane that maximizes
the geometric margin (the distance from the hyperplane to an

Model Description Class Weights Feat. Set Standardized 95% PCA Avg. 5-fold CV Acc.
Baseline: Frequency of Most Common Pitch (“FF”) - - - - 58.27%
Multi-Layer Perceptron

Hidden Layer Sizes: [100, 200, 200, 100]
Dropout Rate: 0%
Regularization Param.: 0.1
Learning Rate: 0.001
Batch Size: 200

None Whole No No 59.59%

Linear SVM None Whole No No 58.97%
Logistic Regression None Whole Yes No 58.73%

TABLE IV
TOP CLASSIFICATION ACCURACIES FOR THE THREE MODELS: NEURAL NETWORK, LINEAR SVM, & LOGISTIC REGRESSION

arbitrary point). Our SVM algorithm attempts to minimize
the multi-class hinge loss function

l(θ,X, y) =

n∑
i=1

K∑
k=1,k ̸=yi

max(0, 1− θTyixi + θTk x
i)

to separate our data into the K = 5 classes according to θ.
We have an l2-norm penalty applied to θ to avoid overfitting.

We also experimented with class weighting due to the
imbalance of classes in our data.

IV. RESULTS

Across the 3 different feature sets (“Whole,” “Sit,” and
“WOR”); the 3 different feature selection/reduction tech-
niques (“Normal,” “Min-Max Scaling,” and “95% PCA”);
and the 7 different hyperparameters (see Section III-A.1), we
experimented with 81 different MLP models. Similarly, we
experimented with 18 different Logistic Regression models
and 18 different Linear SVM models.

We assessed the model performance of our 117 different
models during training using k-fold Stratified Cross Valida-
tion where k = 5 (5-fold CV), stratifying so as to maintain
the same class distribution from our original dataset. We
utilized Classification Accuracy,

Classified Correctly
of Examples in Validation Set

, (1)

to compare model performance and select optimal hyper-
parameters. Classification accuracy was chosen (as opposed
to precision, recall, F1-scoring, ROC-AUC or other classi-
fication metrics) due to both the multi-class nature of our
problem and the fact that classification accuracy was the
primary method of performance evaluation in past related
work [2], [3], [4], [5], [6], enabling easier comparison.

For each of the three general models, we have displayed
the best hyperparameters–including class weighting, feature
set, feature selection/reduction–and the resulting highest
average 5-fold cross-validation accuracy in Table IV. The
Multi-Layer Perception performed the best out of the three
models, with a CV accuracy of 59.59%. We then evaluated
this model against the test set, where it achieved 58.97%
test accuracy. Thus, our best model only performed slightly
better than the baseline accuracy of 58.3%: the frequency of
the most common pitch (“FF”) in Verlander’s repertoire.

In Figure 1, we display three confusion matrices for the
performance of the best MLP model against the test set.
All three confusion matrices display the same data, but
are normalized in different ways: 1) across rows; 2) across
columns; and 3) across the entire grid. We discuss the
significance of these confusion matrices in the next section.

V. DISCUSSION

Throughout our research, we operated under the assump-
tion that more data–specifically, more pitchers–would result
in higher training accuracies. This was due to the work of
past researchers [3], [4], previously mentioned, that were
able to achieve accuracies as high as 70% and 80% on
multi-class classification by using data from more than 200
pitchers (100, 000’s of examples). Part of the challenge of our
particular approach was to see if we could achieve similar
accuracies on a single pitcher, thus placing a constraint on
the size of our dataset.

As can be seen from our results, none of our 117 different
models were able to achieve much higher than our baseline
naive accuracy of 58.3%. Our experiments, as described in
Section III, were a series of sequential attempts to rectify
this issue.

As we prepared the dataset for training, we theorized that
the sparsity of our dataset–due to the presence of a number
of one-hot vectors in the input–contributed to the models’
poor performances. After all, a training dataset needs to be
representative of all possible combinations of input features
in order for a particular model to learn best from that dataset.
Sparsity in a dataset can be an obstacle in this goal. Thus,
we experimented with feature selection (through the three
different feature sets) and feature reduction (through PCA).
Although our best models seen in Table IV were all trained
on the whole dataset, it is important to note that the reduced
feature set models and PCA models did not perform much
worse: their average CV accuracies were also in the range of
about 56-58% accuracy. Thus, although attempting to address
sparsity did not result in better model performances, we
learned that it did not significantly hurt model performances.

We also attempted to increase model complexity to see
if more complex neural networks (i.e., networks with more
layers and more neurons per layer) could achieve higher test
accuracy. Although the more complex networks (some as
many as seven or eight layers deep) were able to achieve

(a) Normalized by Row / True Label (b) Normalized by Col. / Pred. Label (c) Normalized across Entire Matrix

Fig. 1. Confusion Matrices for the Best MLP Model, evaluated on the Test Set

higher training accuracy, test accuracy never improved. This
suggested to us that these more complex networks were
simply memorizing the training set without learning any
nonlinear feature combinations that might generalize well to
the test set. As a result, we stopped trying to increase model
complexity and experimented more with other hyperparam-
eters instead.

Because of the imbalances in our data, we also attempted
to utilize dropout layers and/or class weightings in our
models. However, neither dropout layer nor class weightings
improved the models beyond the performances we see in
Table IV.

A. A Closer Analysis of the Best MLP Model

Looking at the confusion matrices for our best MLP model
in Figure 1, we can gain insight into exactly what our neural
networks might have been learning.

First, note that the numbers in Figure IV represent the
following quantity: ”Given that the true label is X, what is
the probability that the model guessed Y?” Across all five
of the pitch classes, our model learns to guess “FF” most of
the time–this makes sense, as the four-seam fastball was the
most prevalent class in the data.

The numbers in Figure IV answer a different question:
”Given that the model guessed X, what is the probability
that the true label is Y?” These numbers actually suggest
that, despite the low classification accuracy, our best model
does have some utility. If our model were to be used in a
live MLB game where Justin Verlander was pitching and
the model guessed that the next pitch to be thrown would
be a Sinker (“SI”), the probability that the next pitch would
actually be a Sinker would be 67%. Seeing as how Justin
Verlander doesn’t throw a lot of sinkers (they represented less
than 1000 of all his pitches), this is excellent information to
have during a game. The predictions for the changeup (“CU”)
and four-seam fastball (“FF”) have similar value.

VI. CONCLUSIONS AND FUTURE WORK

The goal of our paper was, given a set of features related to
game, pitcher, and batter information, how well can we pre-
dict the next pitch thrown by Justin Verlander. We attempted
MLPs, Multinomial Logistic Regression, and SVM models

for this classification task, experimenting with various feature
sets, and applying standardization and PCA to our features
to find what data processing worked best. Additionally, we
experimented with a number of hyperparameters meant to
address potential overfitting and guessing the most popular
pitch that come as a result of our small and imbalanced
dataset. In the end, our best MLP model achieved a test
accuracy of 58.3%, with specifics regarding CV accuracy in
Table IV. While this accuracy is somewhat low, and is on
par with just predicting the most common pitch type, further
analysis in Section V-A shows that our model learned more
than just predicting the most common pitch and thus has
value in understanding a pitcher.

A. Future Work

We believe one aspect that made our models struggle
was a lack of examples, making the model both prone to
overfitting and struggle to predict less relevant pitches. Still,
we would like to “figure out” a given pitcher, and the average
pitcher will have no more than 40,000 pitches in their career.
Thus, one idea would be to cluster similar pitchers to the
pitcher you are predicting, and use the pitching history from
similar pitches to generate more examples, while finding
methods to place more weight on the specific pitcher you are
predicting. We could also implement transfer learning [16] by
training a neural network model on an increased number of
examples (> 1, 000, 000 pitches from many pitchers across
multiple years), freezing the first section of layers, and then
retraining it specifically on Justin Verlander’s data. Thus, our
model would benefit from the nonlinear insight gained by
the increased number of training examples used to train the
general model, but would still be fine-tuned to Justin Verlan-
der’s pitching patterns. Inspired by Lee [5] and Yu, Cheng,
and Chang [6], we should explore additional neural network
techniques such as LSTM models or ensemble models to see
if these techniques could improve our accuracy. The LSTM
model might be able to fit time-dependent peculiarities in a
single pitcher’s data for which our standard neural networks
could not account. Going forward, it would be useful to
develop a better performing ML model as an application
for mobile devices so that batting managers could use these
results live in-game to direct batters.

VII. CONTRIBUTIONS

The processing of data–from a Statcast download to
training-ready input matrices–required a significant amount
of work. Both Holt and Owda contributed to this process.
Holt and Owda split the code-writing portion of this process.
Holt then executed the code and monitored its progress to
prepare the final dataset.

Owda investigated the Statcast dataset to find how Statcast
represented the data and offered analysis on how this com-
bines with our desired experiments. He also researched the
PyBaseball library’s API and wrote the code to import the
data from Statcast. Owda ran the neural network code for
seeing the effects of having one of or both of class weights
and dropout layers. Owda wrote the code to develop PCA
and normalization. Finally, he wrote the Dataset/Features
(including the three feature tables) and Methodology sections
of this report, as well as much of the Conclusion.

Holt researched possible input features to include in both
the baseline dataset and the expanded dataset to be used in
the next phase of the project. He investigated the Statcast
data for potential faulty data (such as misnamed pitches and
incorrect pitch counts) and corner cases. He ran the training
for the SVM models and Logistic Regression classifier using
SciKit-Learn [9], and neural networks without class weights
or dropout layers. Finally, he wrote the Related Works,
Results, and Discussion sections, including Table IV and
Figure 1, and some of the Conclusion.

REFERENCES

[1] D. Bernstein, “Astros cheating scandal timeline, from the first sign-
stealing allegations to a controversial punishment,” 2020.

[2] G. Ganeshapillai and J. Guttag, “Predicting the next pitch,” in Sloan
Sports Analytics Conference, 2012.

[3] P. Hoang, M. Hamilton, H. Tran, J. Murray, C. Stafford, L. Layne, and
D. Padget, “Applying machine learning techniques to baseball pitch
prediction,” 01 2014.

[4] G. Sidle and H. Tran, “Using multi-class classification methods to
predict baseball pitch types,” Journal of Sports Analytics, vol. 4, no. 1,
pp. 85–93, 2018.

[5] J. S. Lee, “Prediction of pitch type and location in baseball using
ensemble model of deep neural networks,” Journal of Sports Analytics,
no. Preprint, pp. 1–12, 2022.

[6] C.-C. Yu, C.-C. Chang, and H.-Y. Cheng, “Decide the next pitch: A
pitch prediction model using attention-based lstm,” in 2022 IEEE In-
ternational Conference on Multimedia and Expo Workshops (ICMEW),
2022, pp. 1–4.

[7] B. Savant, “Statcast,” Dec 2022. [Online]. Available: https:
//baseballsavant.mlb.com

[8] T. Burch. Pybaseball. [Online]. Available: https://pypi.org/
[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[10] K. Ruprecht, “Does location of the pitch affect babip?” Jul 2014.
[Online]. Available: https://www.beyondtheboxscore.com/2014/7/21/
5921769/babip--strikezone-location-mlb

[11] F. Chollet et al., “Keras,” https://keras.io, 2015.
[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” arXiv preprint arXiv:1412.6980, 2014.
[13] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and

P. T. P. Tang, “On large-batch training for deep learning:
Generalization gap and sharp minima,” 2016. [Online]. Available:
https://arxiv.org/abs/1609.04836

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[15] M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support
vector machines,” IEEE Intelligent Systems and their Applications,
vol. 13, no. 4, pp. 18–28, 1998.

[16] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big data, vol. 3, no. 1, pp. 1–40, 2016.

https://baseballsavant.mlb.com
https://baseballsavant.mlb.com
https://pypi.org/
https://www.beyondtheboxscore.com/2014/7/21/5921769/babip--strikezone-location-mlb
https://www.beyondtheboxscore.com/2014/7/21/5921769/babip--strikezone-location-mlb
https://keras.io
https://arxiv.org/abs/1609.04836
http://jmlr.org/papers/v15/srivastava14a.html

	Introduction
	Related Work

	Dataset and Features
	Methods
	Multi-Layer Perceptron
	Experiments

	Multinomial Logistic Regression
	Linear Support Vector Machines

	Results
	Discussion
	A Closer Analysis of the Best MLP Model

	Conclusions and Future Work
	Future Work

	Contributions
	References

