Design Of A Double Pane Transparent Wood Window
Team Fabricating Transparent Wood
Alan Murphy, Miriam Silton, Kailey Stracka, Robin Sultan, & Liqi Zhu

Motivation
- Reduce the amount of planned energy consumption to meet energy performance requirements set by U.S. DoE
- Residential and commercial buildings consume 40% of the country’s primary energy from heating, cooling, and lighting
- From this usage, buildings account for 30% of global CO₂ emissions

Previous Work
- Previous methods for improving the energy efficiency of glass windows include: multiple panes, films, and glazes
- Li et al. (2016) were the first to fabricate high haze transparent wood (R-wood and L-wood)
- High haze wood is anisotropic thermally, optically, and mechanically
- Different polymers have been tested for infiltration to create the composite

Technical Approach
Generalized Fabrication of Transparent Wood (Li et al., 2016):
- Cut sample
- Delignification
- Solvent Exchange
- Epoxy infiltration

Next Steps
- Continued Research
 - Diagonal (D)-wood
 - Processing focus for scale-up size and quantity; consistency
 - Epoxy alternatives in regards to sustainability and non-yellowing properties
 - Sourcing and recyclability

Product Launch
- Target market: younger couples in the Northeast region
- Pricing: $300
- Government incentives
- Economies of scale

Conclusions
- Low haze grain orientation and thickness trends agreed with those of high haze grain orientation and thickness
- Estimated properties of overall window prototype based on properties of individual components for comparison with glass windows
- Transparent wood technology is young with limitations, but understanding of weaknesses will focus research for improvement
- Feasibility will rely on scalability of processing and sourcing

Acknowledgements
The team thanks the Department of Materials Science and Engineering for funding and resources for the project. The team also thanks Dr. Phaneuf for his guidance and assistance for the duration of the project. Thank you to Dr. Hu and those at the UMERC for providing lab resources and the appropriate safety training required for the team’s research. Thank you to Dr. Bonenberger for allowing the team to use the MEMIL facilities and to Dr. Foecke for dedicating his time to help the team with aspects of the project including the feasibility and direction.

“We pledge on our honor that we have not given nor received any unauthorized assistance on this assignment.”

May 2018