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Abstract

In this paper, we consider the problem of simultaneously testing many two-sided hypothe-

ses when rejections of null hypotheses are accompanied by claims of the direction of the

alternative. The fundamental goal is to construct methods that control the mixed directional

familywise error rate, which is the probability of making any type 1 or type 3 (directional)
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error. In particular, attention is focused on cases where the hypotheses are ordered as

H1, . . . , Hn, so that Hi+1 is tested only if H1, . . . , Hi have all been previously rejected. In

this situation, one can control the usual familywise error rate under arbitrary dependence

by the basic procedure which tests each hypothesis at level α, and no other multiplicity

adjustment is needed. However, we show that this is far too liberal if one also accounts for

directional errors. But, by imposing certain dependence assumptions on the test statistics,

one can retain the basic procedure.

1 Introduction

Directional errors or type 3 errors occur in testing situations with two-sided alternatives

when rejections are accompanied by additional directional claims. For example, when

testing a null hypothesis θ = 0 against θ ̸= 0, rejection of the null hypothesis is often

augmented with the decision of whether θ > 0 or θ < 0. In the case of testing a single

hypothesis, type 3 error is generally controlled at level α when type 1 error is controlled

at level α (and sometimes type 3 error is controlled at level α/2). However, in the case

of simultaneously testing multiple hypotheses, it is often not known whether additional di-

rectional decisions can be made without losing control of the mixed directional familywise

error rate (mdFWER), the probability of at least one type 1 or type 3 error. Some methods

have been developed in the literature by augmenting additional directional decisions to the

existing p-value based stepwise procedures. Shaffer (1980) showed that Holm’s procedure

(Holm, 1979), augmented with decisions on direction based on the values of test statistics,

can strongly control mdFWER under the assumption that the test statistics are indepen-

dent and under specified conditions on the marginal distributions of the test statistics, but

she also showed that counterexamples exist even with two hypotheses. Finner (1994) and

Liu (1997) independently proved the same result for the Hochberg procedure (Hochberg,

1988). Finner (1999) generalized the result of Shaffer (1980) to a large class of stepwise

or closed multiple test procedures under the same assumptions. Some recent results have

been obtained in Guo and Romano (2015).

Several situations occur in practice where hypotheses are ordered in advance, based
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on relative importance by some prior knowledge (for example in dose-response study, hy-

potheses of higher dose vs. a placebo are tested before those of lower dose vs. placebo),

or there exists a natural hierarchy in tested hypotheses (for example in a clinical trial, sec-

ondary endpoints are tested only when the associated primary endpoints are significant),

and so on. In such fixed sequence multiple testing situations, it is also desired to make fur-

ther directional decisions once significant differences are observed. For example, in dose

response studies, once the hypothesis of no difference between a dose and placebo is re-

jected, it is of interest to decide whether the new treatment dose is more or less effective

than the placebo. In such cases, the possibility of making type 3 errors must be taken into

account.

For control of the usual familywise error rate (FWER) (which does not account for

the possibility of additional type 3 errors), the conventional fixed sequence multiple testing

procedure that strongly controls the FWER under arbitrary dependence, is known to be a

powerful procedure in testing situations with pre-ordered hypotheses (Maurer et al., 1995;

Wiens, 2003; Wiens and Dmitrienko, 2005). For reviews on recent relevant developments

of fixed sequence multiple testing procedures, see Dmitrienko, Tamhane and Bretz (2009)

and Dmitrienko, Agostino and Huque (2013). Indeed, suppose null hypotheses H1, . . . , Hn

are pre-ordered, so that Hi+1 is tested only if H1, . . . , Hi have all been rejected. The prob-

ability mechanism generating the data is P and Hi asserts that P ∈ ωi, some family of data

generating distributions. In such case, it is easy to see that each Hi can be tested at level α

in order to control the FWER at level α, so that no adjustment for multiplicity is required.

The argument is simple and goes as follows. Fix any given P such that at least one Hi is

true (or otherwise the FWER is 0 anyway). If H1 is true, i.e. P ∈ ω1, then a type 1 error

occurs if and only if H1 is rejected, and so the FWER is just the probability H1 is rejected,

which is assumed controlled at level α when testing H1. If H1 is false, just let f be the

smallest index corresponding to a true null hypothesis, i.e. Hf is true but H1, . . . , Hf−1 are

all false. In this case, a type 1 error occurs if and only if Hf is rejected, which is assumed

to be controlled at level α.

In fact, in situations where ordering is not specified, the above result suggests it may

be worthwhile to think about hypotheses in order of importance so that potentially false

3



hypotheses are more easily detected. Indeed, as is well-known, when the number n of

tested hypotheses is large, control of the FWER is often so stringent that often no rejections

can be detected, largely due to the multiplicity of tests and the need to find significance at

very low levels (as required, for example, in the Bonferroni method with n large). On the

other hand, under a specified ordering, each test is carried out at the same conventional

level.

To our knowledge, no one explores the possibility of making additional directional de-

cisions for such fixed sequence procedures. In this paper, we introduce such fixed sequence

procedures augmented with additional directional decisions and discuss its mdFWER con-

trol under independence and some dependence. For such directional procedures, its simple

fixed sequence structure of the tested hypotheses makes the notoriously challenging prob-

lem of controlling the mdFWER under dependence a little easier to handle than stepwise

procedures.

Throughout this work, we consider the problem of testing n two-sided hypotheses

H1, . . . , Hn specified as follows:

Hi : θi = 0 vs. H
′

i : θi ̸= 0, i = 1, . . . , n. (1)

We assume the hypotheses are ordered in advance, either using some prior knowledge about

the importance of the hypotheses or by some other specified criteria, so that H1 is tested

first and Hi is only tested if H1, . . . , Hi−1 are all rejected. We also assume that, for each

i, a test statistic Ti and p-value Pi are available to test Hi (as a single test). For a rejected

hypothesis Hi, we decide on the sign of the parameter θi by the sign of the corresponding

test statistic Ti, i.e., we conclude θi > 0 if Ti > 0 and vice versa. The errors that might

occur while testing these hypotheses are type 1 and type 3 errors. A type 1 error occurs

when a true Hi is falsely rejected. A type 3 error occurs when a false Hi is correctly rejected

but the claimed sign of the parameter θi is wrong. Then, the mdFWER is the probability

of making at least a type 1 or type 3 error, and it is desired that this error rate is no bigger

than α for all possible data generating distributions in the model.

We make a few standard assumptions about the test statistics. Let Ti ∼ Fθi(·) for some

continuous cumulative distribution function Fθi(·) having parameter θi. In general, most
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of our results also apply through the same arguments when the family of distributions of

Ti depends on i, though for simplicity of notation, the notation is suppressed. We assume

that F0 is symmetric about 0 and Fθi is stochastically increasing in θi. Various dependence

assumptions between the test statistics will be used throughout the paper. (Some of the

results can generalize outside this parametric framework. Of course, for many problems,

approximations are used to construct marginal tests and the approximate distributions of the

Ti are often normal, in which case our exact finite sample results will hold approximately

as well.) Let c1 = F−1
0 (α/2) and c2 = F−1

0 (1− α/2), so that a marginal level α test of Hi

rejects if Ti < c1 or Ti > c2. For testing Hi vs. H ′
i , rejections are based on large values of

|Ti| and the corresponding two-sided p-value is defined by

Pi = 2min{F0(Ti), 1− F0(Ti)}, i = 1, . . . , n. (2)

We assume that the p-value Pi is distributed as U(0,1) when θi = 0.

The rest of the paper is organized as follows. In Section 2, we consider the problem of

mdFWER control under no dependence assumptions on the test statistics. Unlike control

of the usual FWER where each test can be constructed at level α, it is seen that Hi can only

be tested at a much smaller level α/2i−1. Such a rapid decrease in the critical values used

motivates the study of the problem under various dependence assumptions. In Section 3 we

introduce a directional fixed sequence procedure and prove that this procedure controls the

mdFWER under independence. In Sections 4 and 5 we further discuss its mdFWER control

under positive dependence. Section 6 presents some concluding remarks. All proofs are

deferred to Section 7.

2 The mdFWER Control Under Arbitrary Dependence

A general fixed sequence procedure based on marginal p-values must specify the critical

level αi that is used for testing Hi, in order for the resulting procedure to control the md-

FWER at level α. When controlling the FWER without regard to type 3 errors, each αi

can be as large as α. However, Theorem 1 below shows that by using the critical constant

αi = α/2i−1, the mdFWER is controlled at level α. Moreover, we show that these critical
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constants are unimprovable. Formally, the optimal procedure is defined as follows.

Procedure 1 (Directional fixed sequence procedure under arbitrary dependence)

• Step 1: If P1 ≤ α then reject H1 and continue to test H2 after making directional

decision on θ1: conclude θ1 > 0 if T1 > 0 or θ1 < 0 if T1 < 0. Otherwise, accept all

the hypotheses and stop.

• Step i: If Pi ≤ α/2i−1 then reject Hi and continue to test Hi+1 after making direc-

tional decision on θi: conclude θi > 0 if Ti > 0 or θi < 0 if Ti < 0. Otherwise,

accept the remaining hypotheses Hi, . . . , Hn.

In the following, we discuss the mdFWER control of Procedure 1 under arbitrary de-

pendence of the p-values. When testing a single hypothesis, the mdFWER of Procedure

1 reduces to the type 1 or type 3 error rate depending on whether θ = 0 or θ ̸= 0, and

Procedure 1 reduces to the usual p-value based method along with the directional decision

for the two-sided test. The following lemma covers this case.

Lemma 1 Consider testing the single hypothesis H : θ = 0 against H
′
: θ ̸= 0 at level α,

using the usual p-value based method along with a directional decision. If H is a false null

hypothesis, then the type 3 error rate is bounded above by α/2.

Generally, when simultaneously testing n hypotheses, by using Lemma 1 and mathe-

matical induction, we have the following result holds.

Theorem 1 For Procedure 1 defined as above, the following conclusions hold.

(i) This procedure strongly controls the mdFWER at level α under arbitrary dependence

of the p-values.

(ii) One cannot increase even one of the critical constants αi = α/2i−1, i = 1, . . . , n,

while keeping the remaining fixed without losing control of the mdFWER.
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In fact, the proof shows that no strong parametric assumptions are required. However,

the rapid decrease in critical values α/2i−1 makes rejection of additional hypotheses diffi-

cult. Thus, it is of interest to explore how dependence assumptions can be used to increase

these critical constants while maintaining control of the mdFWER. The assumptions and

methods will be described in the remaining sections.

Remark 1 Instead of Procedure 1, let us consider the conventional fixed sequence pro-

cedure with the same critical constant α augmented with additional directional decisions,

which is defined in Section 3 as Procedure 2. By using Bonferroni inequality and Lemma

1, we can prove that the mdFWER of this procedure is bounded above by n+1
2
α. Thus,

the modified version of the procedure, which has the same critical constant 2α
n+1

, strongly

controls the mdFWER at level α under arbitrary dependence of p-values. However, it is

unclear if such critical constant can be further improved without losing the control of the

mdFWER.

3 The mdFWER Control Under Independence

We further make the following assumptions on the distribution of the test statistics.

Assumption 1 (Independence) The test statistics, T1, . . . , Tn, are mutually independent.

Of course, it follows that the p-values P1, . . . , Pn are mutually independent as well.

As will be seen, it will be necessary to make further assumptions on the family of

distributions for each marginal test statistic.

Definition 1 (Monotone Likelihood Ratio (MLR)) A family of probability density func-

tions fδ(·) is said to have monotone likelihood ratio property if, for any two values of the

parameter δ, δ2 > δ1 and any two points x2 > x1,

fδ2(x2)

fδ1(x2)
≥ fδ2(x1)

fδ1(x1)
, (3)

or equivalently,
fδ1(x1)

fδ1(x2)
≥ fδ2(x1)

fδ2(x2)
. (4)
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Definition 1 means that, for fixed x1 < x2, the ratio fδ(x1)
fδ(x2)

is non-increasing in δ. Two

direct implications of Definition 1 in terms of the cdf Fδ(·) are

Fδ1(x2)

Fδ1(x1)
≤ Fδ2(x2)

Fδ2(x1)
, (5)

and
1− Fδ1(x2)

1− Fδ1(x1)
≤ 1− Fδ2(x2)

1− Fδ2(x1)
. (6)

Assumption 2 (MLR Assumption) The family of marginal distributions of the Ti has

monotone likelihood ratio.

Based on the conventional fixed sequence multiple testing procedure, we define a di-

rectional fixed sequence procedure as follows, which is the conventional fixed sequence

procedure augmented with directional decisions. In other words, any hypothesis is tested

at level α, and as will be seen under the specified conditions, no reduction in critical values

is necessary in order to achieve mdFWER control.

Procedure 2 (Directional fixed sequence procedure)

• Step 1: If P1 ≤ α, then reject H1 and continue to test H2 after making a directional

decision on θ1: conclude θ1 > 0 if T1 > 0 or θ1 < 0 if T1 < 0. Otherwise, accept all

the hypotheses and stop.

• Step i: If Pi ≤ α , then reject Hi and continue to test Hi+1 after making a directional

decision on θi: conclude θi > 0 if Ti > 0 or θi < 0 if Ti < 0. Otherwise, accept the

remaining hypotheses, Hi, . . . , Hn.

For Procedure 2, in the case of n = 2, we derive a simple expression for the mdFWER

in Lemma 2 below and prove its mdFWER control in Lemma 3 by using such simple

expression.

Lemma 2 Consider testing two hypotheses H1 : θ1 = 0 and H2 : θ2 = 0, against both

sided alternatives, using Procedure 2 at level α. Let c1 = F−1
0 (α/2) and c2 = F−1

0 (1 −
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α/2). When θ2 = 0, the following result holds.

mdFWER =

 α + Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c2, c2)− F(θ1,0)(c2, c1) if θ1 > 0

1 + Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c1, c1)− F(θ1,0)(c1, c2) if θ1 < 0.
(7)

In the above, Fθ1,θ2(·, ·) refers to the joint c.d.f. of (T1, T2). Then, under Assumption 1

(independence) , (7) can be simplified as

mdFWER =

 α + Fθ1(c1)− αFθ1(c2) if θ1 > 0

1 + αFθ1(c1)− Fθ1(c2) if θ1 < 0.
(8)

Lemma 3 Under Assumption 1 (independence) and Assumption 2 (MLR), Procedure 2

strongly controls the mdFWER when n = 2.

Generally, for testing any n hypotheses, by using mathematical induction and Lemma

3, we also prove the mdFWER control of Procedure 2 under the same assumptions as in

the case of n = 2.

Theorem 2 Under Assumption 1 (independence) and Assumption 2 (MLR), Procedure 2

strongly controls the mdFWER at level α.

Many families of distributions have the MLR property: normal, uniform, logistic,

Laplace, Student’s t, generalized extreme value, exponential familes of distributions, etc.

However, it is also important to know whether or not the above results fail without the

MLR assumption. A natural family of distributions to consider without the MLR property

is the Cauchy family; indeed, Shaffer (1980) used this family to obtain a counterexam-

ple for the directional Holm procedure while testing p-value ordered hypotheses. We now

show that Procedure 2 fails to control the mdFWER for this family of distributions with

corresponding cdf Fθ(x) = 0.5 + 1
π
arctan(x− θ), even under independence.

Lemma 2 can be used to verify the calculation for the case of n = 2 with θ1 > 0 and

θ2 = 0; specifically, see (8). Indeed, we just need to show show

Fθ1(−c) = F0(−c− θ1) > αFθ1(c) = αF0(c− θ1) , (9)
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where c is the 1 − α/2 quantile of the standard Cauchy distribution, given by tan[π(1 −
α)/2]. Take α = 0.05, so c = 12.7062. Then, the above inequality (9) is violated for

example by θ1 = 100. The left side is approximately F (−112.7) ≈ 0.002824 while the

right side is

0.05× F (−87.3) = 0.05× 0.0036 = 0.00018.

4 Extension to Positive Dependence

Clearly, the assumption of independence is of limited utility in multiple testing, as many

tests are usually carried out on the same data set. Thus, it is important to generalize the

results of the previous section to cover some more general cases. As is typical in the

multiple testing literature (Benjamini and Yekutieli, 2001; Sarkar, 2002; Sarkar and Guo,

2010, etc), assumptions of positive regression dependence will be used.

Before defining the assumptions, for convenience, we introduce several notations be-

low. Among the prior-ordered hypotheses H1, . . . , Hn, let i0 denote the index of the first

true null hypothesis, n1 denote the number of all false nulls, and Ti1 , . . . , Tin1
denote the

corresponding false null test statistics. Specifically, if all Hi’s are false, let i0 = n+ 1.

Assumption 3 The false null test statistics along with parameters, θi1Ti1 , . . . , θin1
Tin1

, are

positively regression dependent in the sense of

E
{
ϕ(θi1Ti1 , . . . , θin1

Tin1
) | θikTik ≥ u

}
↑ u, (10)

for each θikTik and any (coordinatewise) non-decreasing function ϕ.

Assumption 4 The first true null statistic, Ti0 , is independent of all false null statistics

Tik , k = 1, . . . , n1 with ik < i0.

Theorem 3 Under Assumptions 2 - 4, Procedure 2 strongly controls the mdFWER at level

α.

Corollary 1 When all tested hypotheses are false, Procedure 2 strongly controls the md-

FWER at level α under Assumptions 2 - 3.
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Remark 2 In Theorem 3, we note that specifically, when all of the tested hypotheses are

false, Assumption 4 is automatically satisfied. Generally, consider the case of any com-

bination of true and false null hypotheses where Assumption 4 is not imposed. Without

loss of generality, suppose θi > 0, i = 1, . . . , n − 1 and θn = 0, that is, the first n − 1

hypotheses are false and the last one is true. Under Assumptions 2-3, if Tn (or −Tn) and

T1, . . . , Tn−1 are positively regression dependent, then the mdFWER of Procedure 2 when

testing H1, . . . , Hn is, for any n, bounded above by

Pr( make at least one type 3 error when testing H1, . . . , Hn−1 or Tn /∈ (c1, c2))

≤ lim
θn→0+

Pr( make at least one type 3 error when testing H1, . . . , Hn)

+ lim
θn→0+

Pr(Tn ≥ c2)

≤ α + α/2 = 3α/2.

The first inequality follows from the fact that when θn → 0+, Hn can be interpreted as a

false null hypothesis with θn > 0, and thus one type 3 error is made if Hn is rejected and

Tn ≤ c1. The second inequality follows from Corollary 1 and Lemma 1.

Based on the above inequality, a modified version of Procedure 2, the directional fixed

sequence procedure with the critical constant 2α/3, strongly controls the mdFWER at level

α under Assumptions 2-3 and the above additional assumption.

Remark 3 In the above remark, further, if we do not make any assumption regarding de-

pendence between the true null statistic Tn and the false null statistics T1, . . . , Tn−1. Then,

by Theorem 3, the mdFWER of Procedure 2 when testing H1, . . . , Hn is bounded above by

Pr( make at least one type 3 error when testing H1, . . . , Hn−1)

+ Pr( make type 1 error when testing Hn)

≤ α+ α = 2α.

Therefore, an alternative modified version of Procedure 2, the directional fixed sequence

procedure with the critical constant α/2, strongly controls the mdFWER at level α only

under Assumptions 2-3.

11



5 Further Extensions to Positive Dependence

We now develop alternative results to show that Procedure 2 can control mdFWER even

under certain dependence between the false null and true null statistics. We relax the as-

sumption of independence that the false null statistics are independent of the first true null

statistic, and consider a slightly strong version of the conventional positive regression de-

pendence on subset of true null statistics (PRDS) (Benjamini and Yekutieli, 2001), which

is given below.

Assumption 5 The false null test statistics, T1, . . . , Ti0−1 and the first true null statistic

Ti0 , are positive regression dependent in the sense of

E {ϕ(T1, . . . , Ti0−1) | Ti0 ≥ u, T1, . . . , Tj} ↑ u, (11)

for any given j = 1, . . . , i0 − 1, any given values of T1, . . . , Tj and any (coordinatewise)

non-decreasing function ϕ.

We firstly consider the case of n = 2, that is, while testing two hypotheses, and show

control of the mdFWER of Procedure 2 when the test statistics are positively regression

dependent in the sense of Assumption 5.

Proposition 1 Under Assumptions 2 and 5, the mdFWER of Procedure 2 is strongly con-

trolled at level α when n = 2.

Specifically, in the case of bivariate normal distribution, Assumption 2 is satisfied and

two test statistics T1 and T2 are always positively or negatively regression dependent. As

in the proof of Proposition 1, to show the mdFWER control of Procedure 2, we only need

to consider the case of θ1 ̸= 0 and θ2 = 0. Thus, if T1 and T2 are negatively regression

dependent, we can choose −T2 as the statistic for testing H2 and Assumption 5 is still

satisfied. By Proposition 1, we have the following corollary holds.

Corollary 2 Under the case of bivariate normal distribution, the mdFWER of Procedure

2 is strongly controlled at level α when n = 2.
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We now consider the case of three hypotheses. The general case will ultimately be

considered, but is instructive to discuss the case separately due to the added multivariate

MLR condition, which is described as follows.

Let f(x|T1) and g(x|T1) denote the probability density functions of T2 and T3 condi-

tional on T1, respectively.

Assumption 6 (Bivariate Monotone Likelihood Ratio (BMLR)) For any given value of

T1, f(x|T1) and g(x|T1) have the monotone likelihood ratio (MLR) property in x, i.e., for

any x2 > x1, we have

f(x2|T1)

g(x2|T1)
≥ f(x1|T1)

g(x1|T1)
. (12)

Proposition 2 Under Assumptions 2, 3, 5, and 6, the mdFWER of Procedure 2 is strongly

controlled at level α when n = 3.

Remark 4 In the case of three hypotheses, suppose that the test statistics Ti, i = 1, . . . , 3

are trivariate normally distributed with the mean θi. Without loss of generality, assume

θi > 0, i = 1, 2 and θ3 = 0, that is, H1 and H2 are false and H3 is true. Let Σ = (σij), i, j =

1, . . . , 3, denote the variance-covariance matrix of Ti’s. It is easy to see that Assumption

2 is always satisfied. Also, when σij ≥ 0 for i ̸= j, Assumption 3 and Assumption 5 are

satisfied. Finally, when σ22 = σ33 and σ12 = σ13, Assumption 6 is satisfied.

Finally, We consider the general case of n hypotheses. Now we must consider the

multivariate monotone likelihood ratio property, described as follows. For any given j =

1, . . . , i0 − 1, let f(x|T1, . . . , Tj−1) and g(x|T1, . . . , Tj−1) denote the probability density

functions of Tj and Ti0 conditional on T1, . . . , Tj−1, respectively.

Assumption 7 (Multivariate Monotone Likelihood Ratio (MMLR)) For any given val-

ues of T1, . . . , Tj−1, f(x|T1, . . . , Tj−1) and g(x|T1, . . . , Tj−1) have the monotone likelihood

ratio (MLR) property in x, i.e., for any x2 > x1, we have

f(x2|T1, . . . , Tj−1)

g(x2|T1, . . . , Tj−1)
≥ f(x1|T1, . . . , Tj−1)

g(x1|T1, . . . , Tj−1)
. (13)
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Theorem 4 Under Assumptions 2, 3, 5, and 7, the mdFWER of Procedure 2 is strongly

controlled at level α.

6 Conclusions

In this paper, we consider the problem of simultaneously testing multiple prior-ordered

hypotheses accompanied by directional decisions. The conventional fixed sequence proce-

dure augmented with additional directional decisions are proved to control the mdFWER

under independence and some dependence, whereas, this procedure is also shown to be

far too liberal to control the mdFWER, if no dependence assumptions are imposed on the

test statistics. We hope that the approaches and techniques developed in this paper will

also shed some light on attacking the notoriously challenging problem of controlling the

mdFWER under dependence for p-value ordered stepwise procedures.

7 Proofs

PROOF OF LEMMA 1. Let T and P denote the test statistic and the corresponding p-value

for testing H , respectively. When testing H , a type 3 error occurs if H is rejected and

θT < 0. Then, the type 3 error rate is given by Pr(P ≤ α, θT < 0).

When θ > 0, we have

Pr(P ≤ α, θT < 0) = Pr(2F0(T ) ≤ α, T < 0)

= Pr
(
T ≤ F−1

0

(α
2

))
= Fθ

(
F−1
0

(α
2

))
≤ F0

(
F−1
0

(α
2

))
=

α

2
.

The inequality follows from the assumption that Fθ is stochastically increasing in θ. Simi-

larly, when θ < 0, we can also prove that Pr(P ≤ α, θT < 0) ≤ α
2
.

PROOF OF THEOREM 1(i). Induction will be used to show that Procedure 1 strongly con-

trols the mdFWER at level α. First consider the case of n = 2. We show control of the

mdFWER of Procedure 1 in all possible combinations of true and false null hypotheses
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while testing two hypotheses H1 and H2.

Case I: H1 is true. Type 1 or type 3 error occurs only when H1 is rejected.

mdFWER = Pr(P1 ≤ α) ≤ α.

Case II: Both H1 and H2 are false. We have no type 1 errors but only type 3 errors.

mdFWER = Pr({P1 ≤ α, T1θ1 < 0} ∪ {P1 ≤ α, P2 ≤ α, T2θ2 < 0})

≤ Pr(P1 ≤ α, T1θ1 < 0) + Pr(P2 ≤ α, T2θ2 < 0)

≤ α

2
+

α

2
= α.

The first inequality follows from Bonferroni inequality and the second follows from Lemma

1.

Case III: H1 is false and H2 is true. The mdFWER is bounded above by

Pr( make type 3 error when testing H1) + Pr( make type 1 error when testing H2)

≤ Pr(P1 ≤ α, T1θ1 < 0) + Pr(P2 ≤ α/2)

≤ α

2
+

α

2
= α.

The first inequality follows from Bonferroni inequality and the second follows from Lemma

1 and P2 ∼ U(0, 1) since H2 is true.

Now assume the inductive hypothesis that the mdFWER is bounded above by α when

testing at most n − 1 hypotheses by using Procedure 1 at level α. In the following, we

prove the mdFWER is also bounded above by α when testing n hypotheses H1, . . . , Hn.

Without loss of generality, assume H1 is a false null (if H1 is a true null, the desired result

directly follows by using the same argument as in Case I of n = 2). Then, the mdFWER is
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bounded above by

Pr( make type 3 error when testing H1)

+ Pr( make at least one type 1 or type 3 errors when testing H2, . . . , Hn)

≤ α

2
+

α

2
= α.

The inequality follows from the induction assumption, noticing that H2, . . . , Hn are tested

by using Procedure 1 at level α/2. Thus, the desired result follows.

(ii). We now prove that the critical constants are unimprovable. For instance, when H1

is true, it is easy to see that the first critical constant, α, is unimprovable. For each given

k = 2, . . . , n, when θi > 0, i = 1, . . . , k − 1 and θk = 0, that is, Hi, i = 1, . . . , k − 1 are

false and Hk is true, we present a simple joint distribution of the test statistics T1, . . . , Tk

to show that the kth critical constant of this procedure is also unimprovable.

Define Zk ∼ N(0, 1) and Zi = Φ−1(|2Φ(Zi+1) − 1|), i = 1, . . . , k − 1, where Φ(·)
is the cdf of N(0, 1). Let qi denote Zi’s upper α/2i quantile. It is easy to check that for

each i = 1, . . . , k, Zi ∼ N(0, 1). Thus, −qi is Zi’s lower α/2i quantile. In addition, by

the construction of Zi’s, it is easy to see that the event Zi ≥ qi is equivalent to the event

Zi+1 /∈ (−qi+1, qi+1).

Let Ti = Zi + θi, i = 1, . . . , k, thus Ti ∼ N(θi, 1). Then, as θi → 0+ for i =

1, . . . , k − 1, we have

mdFWER =
k−1∑
j=1

Pr(T1 ≥ q1, . . . , Tj−1 ≥ qj−1, Tj ≤ −qj)

+ Pr(T1 ≥ q1, . . . , Tk−1 ≥ qk−1, Tk /∈ (−qk, qk))

=
k−1∑
j=1

Pr(Z1 ≥ q1, . . . , Zj−1 ≥ qj−1, Zj ≤ −qj)

+ Pr(Z1 ≥ q1, . . . , Zk−1 ≥ qk−1, Zk /∈ (−qk, qk))

=
k−1∑
j=1

Pr(Zj ≤ −qj) + Pr(Zk /∈ (−qk, qk))

=
k−1∑
j=1

α

2j
+

α

2(k−1)
= α.
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Thus, the kth critical constant of Procedure 1 is unimprovable and hence each critical con-

stant of Procedure 1 is unimprovable under arbitrary dependence.

PROOF OF LEMMA 2. Note that when θ1 > 0 and θ2 = 0, we have

mdFWER

= Pr (P1 ≤ α, θ1T1 < 0) + Pr (P1 ≤ α, θ1T1 ≥ 0, P2 ≤ α)

= Pr (P1 ≤ α, T1 < 0) + Pr (P1 ≤ α, T1 ≥ 0, P2 ≤ α, T2 > 0)

+Pr (P1 ≤ α, T1 ≥ 0, P2 ≤ α, T2 ≤ 0)

= Pr (2F0(T1) ≤ α) + Pr (2(1− F0(T1)) ≤ α, 2(1− F0(T2)) ≤ α)

+Pr (2(1− F0(T1)) ≤ α, 2F0(T2) ≤ α)

= Pr (T1 ≤ c1) + Pr (T1 ≥ c2, T2 ≥ c2) + Pr (T1 ≥ c2, T2 ≤ c1)

= Fθ1(c1) + 1− Fθ1(c2)− F0(c2) + F(θ1,0)(c2, c2) + F0(c1)− F(θ1,0)(c2, c1)

= α+ Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c2, c2)− F(θ1,0)(c2, c1). (14)

Specifically, under Assumption 1 (independence), (14) can be simplified as,

α + Fθ1(c1)− Fθ1(c2) + Fθ1(c2)F0(c2)− Fθ1(c2)F0(c1)

= α + Fθ1(c1)− αFθ1(c2).

Similarly, when θ1 < 0 and θ2 = 0, we can prove that

mdFWER = 1 + Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c1, c1)− F(θ1,0)(c1, c2).

PROOF OF LEMMA 3. By using the same arguments as in Theorem 1, we can easily prove

control of the mdFWER of Procedure 2 in the case of n = 2 when H1 is true or both H1

and H2 are false. In the following, we prove the desired result also holds when H1 is false

and H2 is true.

Note that H1 is false and H2 is true imply θ1 ̸= 0 and θ2 = 0. To show that the

mdFWER is controlled for θ1 > 0 and θ2 = 0, we only need to show by Lemma 2 that
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α + Fθ1(c1)− αFθ1(c2) ≤ α. This is equivalent to show

Fθ1(c2) (F0(c2)− F0(c1)) ≤ Fθ1(c2)− Fθ1(c1). (15)

For proving (15), it is enough to prove the following, as 0 ≤ F0(c2) ≤ 1,

Fθ1(c2) (F0(c2)− F0(c1)) ≤ F0(c2) (Fθ1(c2)− Fθ1(c1)) . (16)

Dividing both sides of (16) by Fθ1(c2)F0(c2), we see that we only need to prove,

1− F0(c1)

F0(c2)
≤ 1− Fθ1(c1)

Fθ1(c2)
,

which follows directly from (5) and Assumption 2 (MLR).

Similarly, to show that the mdFWER is controlled for θ1 < 0 and θ2 = 0, we only need

to show by Lemma 2 that 1 + αFθ1(c1)− Fθ1(c2) ≤ α. This is equivalent to showing

(1− α) (1− Fθ1(c1)) ≤ Fθ1(c2)− Fθ1(c1).

Writing 1−α as (1− F0(c1))−(1− F0(c2)) and writing Fθ1(c2)−Fθ1(c1) as (1− Fθ1(c1))−
(1− Fθ1(c2)), we get that it is equivalent to prove

[(1− F0(c1))− (1− F0(c2))] (1− Fθ1(c1)) ≤ (1− Fθ1(c1))− (1− Fθ1(c2)) . (17)

Since 0 ≤ 1− F0(c1) ≤ 1, to prove inequality (17), it is enough to prove the following,

(1− Fθ1(c1)) [(1− F0(c1))− (1− F0(c2))]

≤ (1− F0(c1)) [1− Fθ1(c1)]− [1− Fθ1(c2)] . (18)

Dividing both sides of (18) by (1− Fθ1(c1)) (1− F0(c1)), we see that proving (17) is equiv-

alent to showing

1− Fθ1(c2)

1− Fθ1(c1)
≤ 1− F0(c2)

1− F0(c1)
, (19)
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which follows directly from (6) and Assumption 2 (MLR).

By combining the discussion of the above two cases, the desired result follows.

PROOF OF THEOREM 2. The proof is by induction on number of hypotheses n. We already

proved strong control of the mdFWER for n = 2 in Lemma 3. Let us assume the result

holds for testing any n = k hypotheses, that is, mdFWER ≤ α while testing any k pre-

ordered hypotheses. We now argue that is will hold for n = k+1 hypotheses. Without loss

of generality, assume H1 is a false null, as in the proof of Theorem 1.

Let V (−1)
k+1 denote the total number of type 1 or type 3 errors committed while testing

H2, . . . , Hk+1 and excluding H1. Then, by the inductive hypothesis, the mdFWER while

testing the k hypotheses H2, . . . , Hk+1 is Pr(V
(−1)
k+1 > 0) ≤ α. Then, the mdFWER of

testing k + 1 hypotheses H1, . . . , Hk+1 is defined by

Pr
(
{P1 ≤ α, T1θ1 < 0} ∪ {P1 ≤ α, T1θ1 ≥ 0, V

(−1)
k+1 > 0}

)
= Pr (P1 ≤ α, T1θ1 < 0) + Pr (P1 ≤ α, T1θ1 ≥ 0) · Pr

(
V

(−1)
k+1 > 0

)
≤ Pr (P1 ≤ α, T1θ1 < 0) + α Pr (P1 ≤ α, T1θ1 ≥ 0) . (20)

The equality follows by Assumption 1 (independence) and the inequality follows by the

inductive hypothesis. Note that (20) is the same as (8) under independence, which is equal

to the mdFWER of Procedure 2 in the case of two hypotheses. So again by applying Lemma

3, we get that mdFWER ≤ α for n = k + 1. Hence, the proof follows by induction.

PROOF OF THEOREM 3 . Without loss of generality, we assume θi > 0 if θi ̸= 0 for

i = 1, . . . , n. Also, if there exists an i with θi = 0, by induction, we can simply assume

i0 = n. Thus, to prove the mdFWER control of Procedure 2, we only need to consider two

cases:

(i) θi > 0 for i = 1, . . . , n;

(ii) θi > 0 for i = 1, . . . , n− 1 and θn = 0.

Case (i). Consider the general case of θi > 0, i = 1, . . . , n. By Assumption 3, the test

statistics T1, . . . , Tn are positively regression dependent. For j = 1, . . . , n − 1, let En−j

denote the event of making at least one type 3 error when testing Hj+1, . . . , Hn using
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Procedure 2 at level α. By using induction, we prove the following two lemmas hold.

Lemma 4 Assume the conditions of Theorem 3. For j = 1, . . . , n − 1, the following

inequality holds.

Pr(En−j|T1 > c2, . . . , Tj > c2) ≤ α. (21)

PROOF OF LEMMA 4. We prove the result by using reverse induction. When j = n − 1,

we have

Pr(En−j|T1 > c2, . . . , Tj > c2)

= Pr(Tn < c1|T1 > c2, . . . , Tn−1 > c2)

=
Pr(Tn < c1)Pr(T1 > c2, . . . , Tn−1 > c2|Tn < c1)

Pr(T1 > c2, . . . , Tn−1 > c2)

≤ Pr(Tn < c1) ≤ α.

The inequality follows from Assumption 3.

Assume the inequality (21) holds for j = m. In the following, we prove that it also

holds for j = m− 1. Note that

Pr(En−m+1|T1 > c2, . . . , Tm−1 > c2)

= Pr
(
{Tm < c1}

∪(
{Tm > c2}

∩
En−m

) ∣∣T1 > c2, . . . , Tm−1 > c2

)
= Pr

(
Tm < c1

∣∣T1 > c2, . . . , Tm−1 > c2
)
+ Pr

(
{Tm > c2}

∩
En−m

∣∣T1 > c2, . . . , Tm−1 > c2

)
= Pr

(
Tm < c1

∣∣T1 > c2, . . . , Tm−1 > c2
)

+ Pr
(
Tm > c2

∣∣T1 > c2, . . . , Tm−1 > c2
)
Pr

(
En−m

∣∣T1 > c2, . . . , Tm > c2
)

≤ Pr
(
Tm < c1

∣∣T1 > c2, . . . , Tm−1 > c2
)
+ αPr

(
Tm > c2

∣∣T1 > c2, . . . , Tm−1 > c2
)

≤ α.

Therefore, the desired result follows. Here, the first inequality follows from the assumption

of induction and the second follows from Lemma 5 below.

Lemma 5 Assume the conditions of Theorem 3. For j = 1, . . . , n − 1, the following
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inequality holds:

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)
+ αPr

(
Tj > c2

∣∣T1 > c2, . . . , Tj−1 > c2
)
≤ α.

(22)

Specifically, for j = 1, we have

Pr (T1 < c1) + αPr (T1 > c2) ≤ α.

PROOF OF LEMMA 5. To prove the inequality (22), it is enough to show that

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)
≤ αPr

(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
)
,

which is equivalent to

(1− α)Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
)

≤ Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
)
− Pr

(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)
.

Note that

1− α = Prθj=0(Tj < c2)− Prθj=0(Tj < c1).

Thus, the above inequality is equivalent to

Prθj=0(Tj < c2)− Prθj=0(Tj < c1) ≤ 1−
Pr

(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
) ,

which in turn is implied by

1−
Prθj=0(Tj < c1)

Prθj=0(Tj < c2)
≤ 1−

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
) . (23)

Note that by Assumption 2, we have

Pr(Tj < c1)

Pr(Tj < c2)
≤

Prθj=0(Tj < c1)

Prθj=0(Tj < c2)
.

21



Thus, to prove the inequality (23), we only need to show that

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
) ≤ Pr(Tj < c1)

Pr(Tj < c2)
,

which is equivalent to

Pr
(
T1 > c2, . . . , Tj−1 > c2

∣∣Tj < c1
)
≤ Pr

(
T1 > c2, . . . , Tj−1 > c2

∣∣Tj < c2
)
,

which follows from Assumption 3. Therefore, the desired result follows.

Based on Lemmas 4 and 5, we have

mdFWER = Pr(T1 < c1) +
n∑

j=2

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

= Pr(T1 < c1) + Pr(T1 > c2)
n∑

j=2

Pr(T2 > c2, . . . , Tj−1 > c2, Tj < c1|T1 > c2)

= Pr(T1 < c1) + Pr(T1 > c2)Pr(En−1|T1 > c2)

≤ Pr(T1 < c1) + αPr(T1 > c2)

≤ α.

Therefore, the mdFWER is controlled at level α for Case (i). Here, the first inequality

follows from Lemma 4 and the second follows from Lemma 5.

Case (ii). Consider the general case of θi > 0, i = 1, . . . , n − 1 and θn = 0. Under As-

sumption 3, Ti, i = 1, . . . , n−1 are positively regression dependent and under Assumption

4, Tn is independent of Ti’s . Note that

mdFWER

=
n−1∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

+ Pr(T1 > c2, . . . , Tn−1 > c2, Tn < c1) + Pr(T1 > c2, . . . , Tn > c2)

=
n−1∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1) + αPr(T1 > c2, . . . , Tn−1 > c2).
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The second equality follows from Assumption 4.

For m = 1, . . . , n− 1, define

∆m =
m∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1) + αPr(T1 > c2, . . . , Tm > c2).

Thus, mdFWER = ∆n−1. By using induction, we prove below that ∆m ≤ α for m =

1, . . . , n− 1.

For m = 1, by using Lemma 5, we have

∆1 = Pr (T1 < c1) + αPr (T1 > c2) ≤ α.

Assume ∆m ≤ α. In the following, we show ∆m+1 ≤ α. Note that

∆m+1 =
m+1∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

+ αPr(T1 > c2, . . . , Tm > c2, Tm+1 > c2)

=
m∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

+ Pr(T1 > c2, . . . , Tm > c2) [Pr(Tm+1 < c1|T1 > c2, . . . , Tm > c2)

+ αPr(Tm+1 > c2|T1 > c2, . . . , Tm > c2)]

≤
m∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1) + αPr(T1 > c2, . . . , Tm > c2)

= ∆m ≤ α. (24)

The first inequality follows from Lemma 5 and the second follows from the inductive hy-

pothesis. Thus, ∆m ≤ α for m = 1, . . . , n − 1. Therefore, mdFWER = ∆n−1 ≤ α, the

desired result.

Combining the arguments of Cases (i) and (ii), the proof of Theorem 3 is complete.

PROOF OF PROPOSITION 1. From the proof of Theorem 1 and by Lemma 1, it is easy to

see that we only need to prove the mdFWER control of Procedure 2 when H1 is false and

H2 is true, i.e., θ1 ̸= 0 and θ2 = 0.
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Case I: θ1 > 0 and θ2 = 0. By Lemma 2, the mdFWER of Procedure 2 is controlled at

level α if we have the following:

Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c2, c2)− F(θ1,0)(c2, c1) ≤ 0.

After rewriting F(θ1,0)(x, y) as Pr(T1 ≤ x, T2 ≤ y) and then dividing through by Pr(T1 ≤
c2), we get,

Pr (T2 ≤ c2|T1 ≤ c2)− Pr (T2 ≤ c1|T1 ≤ c2) ≤ 1− Pr(T1 ≤ c1)

Pr(T1 ≤ c2)
.

Dividing by Pr (T2 ≤ c2|T1 ≤ c2), we get,

1− Pr (T2 ≤ c1|T1 ≤ c2)

Pr (T2 ≤ c2|T1 ≤ c2)
≤ 1

Pr (T2 ≤ c2|T1 ≤ c2)

(
1− Pr(T1 ≤ c1)

Pr(T1 ≤ c2)

)
. (25)

For proving (25), it is enough to prove the following inequality, as 1
Pr(T2≤c2|T1≤c2)

≥ 1.

1− Pr (T2 ≤ c1|T1 ≤ c2)

Pr (T2 ≤ c2|T1 ≤ c2)
≤ 1− Pr(T1 ≤ c1)

Pr(T1 ≤ c2)
. (26)

By Assumption 2 and (5), it follows that F0(c2)
F0(c1)

≤ Fθ1
(c2)

Fθ1
(c1)

, which is equivalent to, 1 −
Pr(T2≤c1)
Pr(T2≤c2)

≤ 1− Pr(T1≤c1)
Pr(T1≤c2)

. Thus for proving (25), it is enough to prove the following:

1− Pr (T2 ≤ c1|T1 ≤ c2)

Pr (T2 ≤ c2|T1 ≤ c2)
≤ 1− Pr(T2 ≤ c1)

Pr(T2 ≤ c2)
. (27)

But, (27) is equivalent to showing

Pr (T1 ≤ c2|T2 ≤ c1) ≥ Pr (T1 ≤ c2|T2 ≤ c2) ,

which follows directly from Assumption 5.

Case II: θ1 < 0 and θ2 = 0. Similarly, by Lemma 2, the mdFWER of Procedure 2 is

controlled at level α if we have the following:

1 + Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c1, c1)− F(θ1,0)(c1, c2) ≤ α, (28)
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which after some rearrangement and rewriting 1− α as F0(c2)− F0(c1) gives,

(
F0(c2)− F(θ1,0)(c1, c2)

)
−

(
F0(c1)− F(θ1,0)(c1, c1)

)
≤ (1− Fθ1(c1))− (1− Fθ1(c2)) .(29)

Thus, proving (28) is equivalent to proving that

Pr (T1 ≥ c1, T2 ≤ c2)− Pr (T1 ≥ c1, T2 ≤ c1) ≤ Pr (T1 ≥ c1)− Pr (T1 ≥ c2) .

Dividing through by Pr(T1 ≥ c1), we get

Pr (T2 ≥ c1|T1 ≥ c1)− Pr (T2 ≥ c2|T1 ≥ c1) ≤ 1− Pr(T1 ≥ c2)

Pr(T1 ≥ c1)
. (30)

Thus to prove (28), it is enough to prove the following,

1− Pr (T2 ≥ c2|T1 ≥ c1)

Pr (T2 ≥ c1|T1 ≥ c1)
≤ 1− Pr(T1 ≥ c2)

Pr(T1 ≥ c1)
,

which is equivalent to proving,

Pr (T2 ≥ c2|T1 ≥ c1)

Pr (T2 ≥ c1|T1 ≥ c1)
≥ Pr(T1 ≥ c2)

Pr(T1 ≥ c1)
. (31)

By Assumption 2 and (6), it follows that for θ1 < 0, Pr(T1≥c2)
Pr(T1≥c1)

≤ Pr(T2≥c2)
Pr(T2≥c1)

. Thus to prove

(28), it is enough to prove the following,

Pr (T2 ≥ c2|T1 ≥ c1)

Pr (T2 ≥ c1|T1 ≥ c1)
≥ Pr(T2 ≥ c2)

Pr(T2 ≥ c1)
. (32)

But (32) is equivalent to showing

Pr (T1 ≥ c1|T2 ≥ c2) ≥ Pr (T1 ≥ c1|T2 ≥ c1) , (33)

which follows directly from Assumption 5. By combining the arguments of the above two

cases, the desired result follows.

PROOF OF PROPOSITION 2. By Corollary 1, without loss of generality, assume that θi >
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0, i = 1, 2 and θ3 = 0, that is, H1 and H2 are false and H3 is true. Note that

mdFWER (34)

= Pr(T1 ≤ c1) + Pr(T1 ≥ c2, T2 ≤ c1) + Pr (T1 ≥ c2, T2 ≥ c2, T3 /∈ (c1, c2)) .

In the following, we prove that

Pr(T1 ≥ c2, T2 ≤ c1) + Pr (T1 ≥ c2, T2 ≥ c2, T3 /∈ (c1, c2))

≤ Pr (T1 ≥ c2, T3 /∈ (c1, c2)) . (35)

To prove (35), it is enough to show the following inequality:

Pr(T2 ≤ c1|T1) + Pr (T2 ≥ c2, T3 /∈ (c1, c2)|T1) ≤ Pr (T3 /∈ (c1, c2)|T1) . (36)

Note that

Pr (T2 ≥ c2, T3 ≤ c1|T1) = Pr(T3 ≤ c1|T1)− Pr (T2 < c2, T3 ≤ c1|T1) (37)

and

Pr (T2 ≥ c2, T3 ≥ c2|T1)

= 1− Pr(T2 < c2|T1)− Pr(T3 < c2|T1) + Pr (T2 < c2, T3 < c2|T1) . (38)

In addition, we have

Pr (T3 /∈ (c1, c2)|T1) = 1 + Pr(T3 ≤ c1|T1)− Pr(T3 < c2|T1). (39)

Thus, in order to show (36), by combining (37)-(39), we only need to prove the following

inequality:

Pr (T2 < c2, T3 < c2|T1)− Pr (T2 < c2, T3 ≤ c1|T1)

≤ Pr(T2 < c2|T1)− Pr(T2 ≤ c1|T1). (40)
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Note that (40) can be rewritten as

Pr (T2 < c2, T3 < c2|T1)

[
1− Pr (T2 < c2, T3 ≤ c1|T1)

Pr (T2 < c2, T3 < c2|T1)

]
≤ Pr(T2 < c2|T1)

[
1− Pr(T2 ≤ c1|T1)

Pr(T2 < c2|T1)

]
. (41)

Thus, to prove (40), it is enough to show

1− Pr (T2 < c2, T3 ≤ c1|T1)

Pr (T2 < c2, T3 < c2|T1)
≤ 1− Pr(T2 ≤ c1|T1)

Pr(T2 < c2|T1)
. (42)

That is,

Pr(T2 ≤ c1|T1)

Pr(T2 < c2|T1)
≤ Pr (T2 < c2, T3 ≤ c1|T1)

Pr (T2 < c2, T3 < c2|T1)
. (43)

By Assumption 6 (BMLR), we have

Pr(T2 ≤ x2|T1)

Pr(T3 ≤ x2|T1)
≥ Pr(T2 ≤ x1|T1)

Pr(T3 ≤ x1|T1)
. (44)

By (44), to prove (43), it is enough to show

Pr(T3 ≤ c1|T1)

Pr(T3 < c2|T1)
≤ Pr (T2 < c2, T3 ≤ c1|T1)

Pr (T2 < c2, T3 < c2|T1)
. (45)

That is,

Pr (T2 < c2|T3 < c2, T1) ≤ Pr (T2 < c2|T3 < c1, T1) . (46)

The inequality (46) holds under Assumption 5. Therefore, the inequality (35) holds.

Based on (34)-(35) and Proposition 1, we have

mdFWER = Pr(T1 ≤ c1) + Pr (T1 ≥ c2, T3 /∈ (c1, c2)) ≤ α.

Thus, the desired result follows.

PROOF OF THEOREM 4. By Corollary 1, without loss of generality, assume that θi > 0, i =
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1, . . . , n− 1 and θn = 0, that is, Hi, i = 1, . . . , n− 1 are false and Hn is true. Note that

mdFWER (47)

=
n−1∑
j=1

Pr(T1 ≥ c2, . . . , Tj−1 ≥ c2, Tj ≤ c1) + Pr(T1 ≥ c2, . . . , Tn−1 ≥ c2, Tn /∈ (c1, c2)).

In the following, we prove that

Pr(T1 ≥ c2, . . . , Tn−2 ≥ c2, Tn−1 ≤ c1) + Pr (T1 ≥ c2, . . . , Tn−1 ≥ c2, Tn /∈ (c1, c2))

≤ Pr (T1 ≥ c2, . . . , Tn−2 ≥ c2, Tn /∈ (c1, c2)) . (48)

To prove (48), it is enough to show the following inequality:

Pr(Tn−1 ≤ c1|T1, . . . , Tn−2) + Pr (Tn−1 ≥ c2, Tn /∈ (c1, c2)|T1, . . . , Tn−2)

≤ Pr (Tn /∈ (c1, c2)|T1, . . . , Tn−2) . (49)

By using the same argument as in proving (36) in the case of three hypotheses, we can

prove that the inequality (49) holds under Assumptions 5 and 7. Then, by combining (47)

and (48), we have

mdFWER (50)

≤
n−2∑
j=1

Pr(T1 ≥ c2, . . . , Tj−1 ≥ c2, Tj ≤ c1) + Pr(T1 ≥ c2, . . . , Tn−2 ≥ c2, Tn /∈ (c1, c2)).

Note that the right-hand side of (50) is the mdFWER of Procedure 2 when testing H1, . . . , Hn−2,

Hn. By induction and Proposition 1, the mdFWER is bounded above by α, the desired re-

sult.
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