Aerospace Technology Gaps and the U.S. Space Force

By: Katie Kim, Rohan Wariyar, Niko Chapas, Nick Delurgio, and Connor Scott
Agenda

Executive Summary

Research Objectives/Methodology

USSF Mission/Goals

In-Space Propulsion

Satellite Communications

Conclusion/Recommendations
Executive Summary

• In this presentation, we will be analyzing the needs for the future of the U.S. Space Force.
 – how the aerospace industry can develop to fulfill those needs

• We have developed a methodology that initially identified the present and future technology gaps for the Space Force.
 – After recognizing gaps in current technology, our motivation was to find how the aerospace industry is planning to advance
 – Our research encompassed two specific aerospace technologies that are vital for the Space Force
Research
Objectives/Methodology
Approach and Outcomes

● Identify the strategic objectives of the USSF
 ○ From Space Force Documentation

● Create a methodology to best determine technology gaps
 ○ Critical evaluation of available/conceptual technology in a chosen discipline
 ○ Tested on the following fields:
 ■ In-Space Propulsion
 ■ Satellite Communications

● Provide USSF with recommendations
Methodology

1. Derive USSF Objectives
 • From global trends & USSF documentation
2. Create Hypothesized Mission Profiles
 • Thought exercise to help relate USSF objectives to current technology
3. Infer Technology Needs
4. Research and Analyze Current/Emerging Technology
5. Synthesize the individual capability/need mismatches between steps (3) and (4) into technology gaps
USSF Missions/Goals
Global Trends

• Post Cold War: international collaboration in the space domain (ex. ISS)
 – This period appears to be ending
 – Trending toward factionalism
• Russian government still has strong presence in space
• China’s influence is spreading across Asia
 – Rapid development of in-space capabilities
• Potential Chinese-Russian cooperation
• Competition between US, Russia, and China on in-space activities is likely.
Space Force Objectives*

- Space Superiority
- Space Domain Awareness
- Space Support to Operations
- Space Mobility and Logistics
- Information Mobility

*Document: Comprehensive Plan for the Organizational Structure of the U.S. Space Force
Hypothesized Mission Profiles

• Protect USSF space assets from hostile threats
 – Kinetic, Laser, Electronic, Cyber Warfare
 – May require rapid response
• Initiating in space offensive maneuvers
 – Blind, disable, or even destroy a target spacecraft
• Planetary and non-planetary surveillance
• Transportation of crews and equipment to, from, and across cislunar space
 – Generally requires larger spacecraft
• Defend commercial/private spacecraft
 – Preserve freedom of action/ensure in-space safety
In-Space Propulsion
General Requirements

1. Impulsive Maneuvers
 • Required thrust dependant on a spacecraft’s mass
 • Essential for offensive/defensive maneuvers, transportation

2. Attitude Controls/Orbital Maintenance
 • Attitude control important to complete in-space missions
 – Note: Attitude Control can be done with reaction wheels
 • Orbital maintenance required to correct prevent orbital drift

3. Longevity
 • Spacecraft’s lifespan exceed its mission length (10+ years)
 • Fuel requirements often a limiting factor

4. Deorbiting Ability
 • Necessary to prevent accumulation of space debris
Technology

Chemical Propulsion
• Typically used on medium/large spacecraft
 – Well-understood, flight-demonstrated
• Capable of high thrust, but comparatively low I_{sp}

Electric Propulsion
• Often used for small spacecraft and deep-space missions
 – Some methods are well understood (HETs)
 – Currently lots of innovation in this field
• High I_{sp}, but intense power requirements limit thrust

Nuclear Propulsion
• Use of fission/radioisotopes to (in)directly provide thrust
 – Early stages of development
• Nuclear Thermal: high I_{sp} and thrust for in-space applications
• Nuclear Electric: used in conjunction with electric propulsion
Thrust

- Higher thrust leads to faster maneuvering
- Larger mass -> lower acceleration

Specific Impulse (I_{sp})

- Increases thrust by increasing exhaust velocity
- Higher I_{sp} leads to less fuel consumption
Fulfillment of Individual Needs

1. Impulsive Maneuvers (Met)
 - Variety of chemical propulsion technologies (bipropellants) meet this need
 - Small spacecraft can use electric propulsion
 - Nuclear Thermal a great option with development, high I_{sp}

2. Attitude Control/Orbital Maintenance (Met)
 - Monopropellants, cold gas, electric propulsion are effective options

3. Longevity (Met)
 - Reducing fuel consumption (increasing I_{sp}) is key
 - High I_{sp} electric systems such as HETs and Gridded Ion are great solutions
 - Nuclear Propulsion also offers impressive I_{sp}

4. Deorbiting Ability (Met)
 - Aerodynamic Drag, Electrodynamic tethers can be used in cislunar space
 - Uncontrolled Solution
 - Electric propulsion systems also an excellent, controllable option
Synthesis of Needs

1. Impulsive Maneuvers & Longevity (Not Met)
 - Electric Propulsion meets both needs for small spacecraft
 - Larger spacecraft generally require chemical propulsion
 - Requires in-space refueling
 - Nuclear Thermal is a potential future solution

2. Attitude Controls/Orbital Maintenance & Longevity (Met)
 - Electric propulsion fulfills this need; chemical propulsion does not
 - Low thrust requirement means these systems can be very efficient

Takeaway: the lack of high thrust, high I_{sp} solutions is the most significant propulsion technology gap the USSF is facing.
Satellite Communications
General Requirements

1. Security and Confidentiality
 • Prevent access to information

2. Information Mobility
 • Reliability of transmissions
 • Rapid timing of transmissions
 • Ability to respond to threats swiftly and seamlessly

3. Resiliency
 • Maintain communications in all operating environments
 • Diversified and proliferated satellite communication capabilities
Technology

RF Communication
• Conventional method of SATCOM
• Responsible for majority of communications today

Optical Communication
• Newer, promising method of SATCOM

Data Processing
• Set of technologies responsible for sending, receiving, and interpreting communications
Fulfillment of Individual Needs

1. Security and Confidentiality (Met)
 • Current technology like Protected Tactical Waveform offers secure communication capabilities
 • Could be improved with innovation in quantum cryptography

2. Information Mobility (Not Met)
 • An ever increasing demand for bandwidth requires improvements upon conventional RF technology to combat spectrum congestion
 • With further development, optical communication and the use of higher frequency bands could meet requirement

3. Resiliency (Not Met)
 • MILSATCOM currently relies on a small number of large multipurpose satellites
 • Disaggregation could meet requirement by providing redundancy and target diversity
Synthesis of Needs

1. Security and Confidentiality/Information Mobility (Not Met)
 • Protected communication is currently very limited in capacity
 • Optical communications are more secure than RF communications and more readily deployed

Takeaway: The lack of widespread protected communications is a significant problem facing the USSF
Conclusion/Recommendations
Summary: Propulsion

Conclusions

• Modern technology adequate to fulfill most USSF objectives
• Large spacecraft limited by fuel requirements

Recommendations

• Focus on small spacecraft development in the short term
 – Can meet our longevity requirement via electric propulsion
• Invest in Nuclear Thermal Propulsion research
 – Eventually large spacecraft will be necessary
 – Even with nuclear propulsion, in-space refueling will eventually be necessary
Summary: Communications

Conclusions
• RF spectrum congestion and increasing bandwidth demands pose big problem
• Advancements in optical communications or higher frequency bands are necessary to meet requirements
• Older space systems that prioritize size and capability are high-value, easily identifiable targets

Recommendations
• Focus attention on development of antenna technology to cover new frequency bands (including optical frequencies)
 – Cost, power consumption, miniaturization, efficiency
 – Promising techs include metamaterial, 3D-printed, and fractal antennas
• Implement disaggregation sooner rather than later
 – Redundancy, target diversity
Learning Outcomes

During Research:

• More involved in current events regarding space policy
• Understanding the urgency of space security
• Assessing applications of aerospace technologies to Space Force needs
• Forming hypotheses and utilizing documentation to develop an informed viewpoint

Follow-Up:

• Continue to stay updated with current events
• Apply this research method to other technologies
• Applying knowledge to our aerospace careers
• Using what we learned as motivation for our studies
• Informing others and seeking knowledge from professionals
Thank you!

Questions, comments, concerns?
Discussion

We are writing a research paper which covers these points in more detail.

• What technology is the aerospace industry lacking on the most? What developments need to be made with that technology?
• What research methods would help our analysis?
• Are there any resources you would recommend for learning more about the needs of the Space Force?
• What are some emerging threats that the aerospace industry has not begun to address yet?